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Editorial Desk

We are pleased to share with you the
latest edition of INAE TechFrontier,
the quarterly e-magazine of the Indian
National Academy of Engineering
(INAE). The first volume on
Quantum Technology successfully
was launched this year on April 20,
2025, during the INAE Foundation
Day, the magazine continues to serve
as a platform for showcasing recent
advancements and innovations across
the engineering and technology
landscape.

This edition focuses on the theme of
Cyber-Physical Systems, a rapidly
evolving domain that integrates
computation, communication, and
control to transform sectors ranging
from manufacturing to healthcare,
transportation, and industrial
automation. The curated articles in
this issue offer diverse perspectives on
how Cyber-Physical Systems are
reshaping industries, enabling
intelligent systems, and driving
next-generation engineering
solutions.

The lead article explores the strategic
and economic dimensions of CPS,
highlighting how businesses can
leverage these technologies to
enhance productivity, unlock new
value chains, and accelerate digital
transformation. Another article
focusses on the convergence of
Artificial Intelligence and
Cyber-Physical Systems, this piece
delves into how intelligent, connected
manufacturing ecosystems are
enabling smarter decision-making,

adaptive operations, and enhanced
system resilience.

The third contribution provides
insights into the application of AI
within metallurgical processes,
emphasizing how data-driven
intelligence and CPS frameworks are
improving efficiency, safety, and
process optimization. The final article
addresses the critical role of
communication technologies, this
contribution examines wireless
solutions for industrial CPS,
discussing challenges, architectures,
and innovations that enable flexible,
scalable, and reliable industrial
operations.

The next issue, due in March 2026,
shall focus on the Sustainability of
Civil Infrastructure. We are actively
inviting engaging and original articles
from interested contributors.
Submissions may be sent to
publications@inae.in.
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Scaling the Impact of
Cyber-Physical Systems
— A Business View

Mr. K Ananth Krishnan, FNAE, Former Chief Technology
Officer of Tata Consultancy Services

Abstract

This paper highlights the business
challenges and potential
approaches for implementing
Cyber-Physical Systems at scale.
Such systems are inherently
inter-disciplinary from a Research
and Innovation perspective. The
opportunities to implement such
systems span across organisation
boundaries and even industry
boundaries. These factors
significantly increase the
complexity, costs and time of
taking initial ideas to full scale
implementation.

Individual enterprises and
national initiatives are tackling
these challenges with innovative
methods and practices. The
software industry in India, is
systematically applying methods
and techniques to scale the impact
of Research, Innovation and
Implementation. We describe
some of these techniques in the
context of Cyber-Physical Systems.
We conclude with an overview of a
novel set of approaches being
adopted by a National Mission
established by the Department of
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Science and Technology,
Government of India.

Introduction

The Cyber-Physical Systems
Summit held in the United States
in 2006 was a pivotal event in the
recognition of Cyber-Physical
Systems as a new opportunity for
not just advancing Science and
Technology but also creating
significant impact for all of
humanity. It led to the publication
of the Cyber-Physical Systems
White Paper!. This led to
subsequent progress in many areas
of Research and Innovation related
to the discipline?, especially the
ability to monitor, infer, control,
and optimise operations at the
intersection of computational
elements, network elements,
physical elements and external
processes.

The inter-disciplinary nature of
Cyber-Physical Systems is evident
at multiple levels. For example,
such systems include physical
devices, sensors, and actuators for
a wide range of application

Mr. K Ananth Krishnan

Mr. K Ananth Krishnan, FNAE, retired
as the Chief Technology Officer of Tata
Consultancy Services after a career of
over three and a half decades in the
same organisation. In this role, he was
responsible for Research, Innovation
and Co-Innovation. His areas of
expertise include the Management of
Technology and Inter-Disciplinary
Applications of Computer Science and
Engineering.

Ananth has served on the Governing
Council of INAE and other Academic
Institutions, Industry Advisory Boards,
and Government Committees. He was
a regular invitee to the Board of TCS
and is serving as independent director
of TVS Supply Chain Solutions.

domains (agriculture, mining,
metallurgy, manufacturing,
transportation and healthcare to
name a few). An equally diverse set
of technology domains use
Cyber-Physical Systems: industrial
automation, telecommunications,
aerospace, materials and
structures, life sciences are among
the examples. At the level of
inferencing, decision making and
control, Cyber-Physical Systems
could involve Control Systems, Big
Data, Artificial Intelligence (AI)
and Machine Learning, Robotics
and Autonomous Systems.
Applications areas include Additive
Manufacturing, Computer Vision
and Speech, Collaborative
Robotics and Digital Twins to add
meaningful value to the end user.

Given this depth and range of
diversity and inter-disciplinary
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possibilities, let us now move to a
business or even a societal
perspective. What would the world
look like in 20507 What will be the
expectations from Cyber-Physical
Systems?

There are a number of ‘Grand
Challenges’ of planetary scale,
starting with sustainability and
climate change, to food, education,
skills, livelihood, shelter, health
and well being. Tackling these
requires significant invention,
innovation, collaboration, and a
commitment to making the world
a better place for us and future
generations. We will need a
widespread capability to transform
novel ideas and concepts in not
just Cyber-Physical Systems but a
range of other disciplines into a
stream of new products, services
and business models at an
ever-increasing pace.

Platforms like the World Wide
Web and its multiple avatars,
optical fibre and radio
technologies, connected devices,
sensors, mobile devices and the Al
revolution have created an
abundance of compute, data and
connectivity to lay the foundations
for Cyber-Physical Systems. There
is of course an increased need for
trust and governance,
underpinned by security and
privacy for each entity in the
digitally connected world.
Accessibility and inclusiveness of
technology for each part of the
world becomes even more
important.

It is clear that we live in a world
that has increasing expectations
from technology. We have come to
expect an inexhaustible series of
inventions, and the innovations
that arise from these inventions, at
an ever-increasing rate.
Researchers, technologists,
engineers and business leaders
have an enormous responsibility
in living up to these expectations.

INAE TechFrontier

The Technology-Market
Map

How will these researchers,
technologists, engineers and
business leaders respond? The
outcomes they produce will need
to be applied towards the common
good, across multiple industries,
ecosystems and value streams, and
will be called upon to solve our
largest and most complex
challenges.

There are many ways to establish,
communicate and manage such a
rich agenda for Research,
Innovation and Implementation.
We now describe a set of methods
and process based on the work
done by the late Prof. Clayton M
Christensen of Harvard Business
School*** which were deployed in
Tata Consultancy Services when
he was an independent director on
the board. It is called the ‘Clay
Map’ in his memory and is based
on the much more detailed
‘Technology Market Map’ he has
described in his research and
publications.

The key concept of a Clay Map is
to provide basis for a differentiated
approach to a large number of
innovation ideas in the portfolio
and executing multiple types of
ideas and innovations in a
systematic manner. The Clay Map
as a mental model has 4 categories
for operating the ideas to
implementation process based on
a 2x2 classification.

The horizontal axis addresses the
‘jobs to be done’ and starts with
questions like ‘why do my
customers use my product or my
service today?’ followed by ‘how
could this change in the future.
The vertical axis is the ‘capability
required for implementing these
jobs’ and starts with questions like
‘what capabilities do I have today
(e.g., technology, talent, business
model, capital, intellectual
property)’ followed by ‘what

capabilities do I need for the
tuture’

The 4 quadrants of the Clay Map
can be used by an enterprise for
classifying a set of Innovation
ideas, and then developing an
execution model to go from ideas
to implementation:

1. Current capabilities to address
current jobs to be done

o Ideas which innovate with
current or incrementally
improved capabilities and
address current market and
customer needs.

o These ideas could be
around efficiency, scale,
compliance and resilience
by applying Cyber-Physical
Systems at the core of the
current business with
current customers.

« These drive necessary,
incremental or derivative
improvements in current
products and services.

o The risk of failure is
relatively low, and timelines
to deliver impact are
usually a few weeks to a few
months.

+ Such ideas are best owned
and implemented by teams
on the ground in each
business.

« Examples:
- Improve the reliability of
equipment by enabling
sensor-based predictive
maintenance.
- Improve the resilience of
crops with targeted
detection and elimination
of pests.
- Improve the health of a
diabetic patient with a
wearable blood sugar
Sensor.

2. New capabilities to address
current jobs to be done

+ Technology-led
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Opportunities for large
improvements in current
products and services.

« The risk is moderate to
high, but timelines could
be in months to years.

+ Such ideas are best owned
by specialists from
Research and Innovation
teams in partnership with
the new product/service
development capability
deployed by each business.

« Examples:
- Deliver on the business
promise of 5G, industry 4.0
and similar frameworks at
scale.
- Improve the safety
features of a car starting
with advanced driver
assistance systems and
moving to fully
autonomous automobiles.
- Radically transform the
capability for elderly care
with autonomous robotic
healthcare and other
advanced assistive care
technologies.

3. Current capabilities to address
future jobs to be done

« Market creating
opportunities that use
current or incrementally
improved capabilities to
address future customer
needs or futuristic markets.

« Could involve
collaboration between
engineering and business
school researchers for
arriving at new business
models for existing
capabilities or new market
adaptations of current
products and services.

+ Inside an enterprise, this
could be driven by the new
product/service
development, and a
business incubation team,

INAE TechFrontier

perhaps with ecosystem
partners.

+ The risk is moderate to
high, but timelines could
be in months to years.

« Examples:
- Create ‘shared’ or
‘fractional’ or ‘as-a-service’
models for appliances,
equipment or instruments
based on sensor-based
resource allocation.
- Create new markets for
insuring ‘high-risk’
categories like very young
or very old drivers, with
sensor-based
measurements and
automated driver assistance
technologies.
- Enable new retailing
models like 10-minute
delivery and unmanned
self-service stores using
robotic warehouses,
intelligent shelves and
automated checkouts.

4. New capabilities to address
future jobs to be done

+  Blue-sky opportunities,
based on radical new
capabilities to address
future customer needs or
futuristic markets, or new
business models. These
will typically use radical
technology with leapfrog
business models for future
products and services.

o This is best driven in a
research-led manner and
iterated between academia,
industry, startups and
government funding.

o Therisk is high, and
timelines could be in years.

« Examples:
- Ideation on advancements
in other areas of computing
and engineering like
Artificial General
Intelligence (AGI),

Quantum Computing, 6G
and beyond, Meta
Materials and so on create
new opportunities.

- Visualisation of next
generation defense and
warfare risks, and
mitigation of these.

- Challenges and
opportunities from space
and interplanetary travel.

The most common use of the four
quadrants of the Clay Map, is to
visually represent different ideas
and projects comprising the
agenda for research and
innovation. At the next step, the
method can be used for resource
allocation and to set expectations
for the kind of approaches and
outcomes being aimed for. Each of
the quadrants has a different
portfolio of ideas, different
execution teams, different
ecosystem partnerships, different
timelines, different risk and return
profiles. A given enterprise will
take decisions on which quadrants
will be appropriate for their
context. The organisation (or
nation) will also allocate resources
appropriate to its needs and
context.

As an example, a resource
allocation of (100,0,0,0) definitely
minimises risk of failures but is
unlikely to make substantial
progress in terms of impact. At the
other extreme, (0,0,0,100) will be
very visionary and exciting but is
unlikely to make any impact for
several years.

The 4E Model

The definition and depiction of a
strategy in the form of a Clay Map is
the first step in the transformation
of an idea or concept into a market
winning product, service or
business model. The complexity of
this process is higher in Cyber-
Physical Systems, as we noted
earlier because of the need for
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multiple disciplines and
stakeholders to come together.
Clearly, an enterprise of any size
will have to apply an agile,
responsive and adaptable process
to get consistent results. While
many such processes have been
described ¢”# a specific example is
the 4E model adopted by Tata
Consultancy Services for
executing their Research and
Innovation agenda®.

The 4E model is so named for the
Four Capabilities mapping into
Four Phases required to operate it:

A. Evangelist-Entrepreneur
B. Explore

C. Enable-Engineer

D. Exploit

The enterprise needs a mindset
like a venture capital team, with a
fund raised from internal or
external investors, and a large
number of passionate ‘startups’
which have ideas in each quadrant
of the Clay Map. Each of these
ideas will come to life in a series of
90-day ‘agile’ sprints.

The first one or two sprints, with a
relatively small budget (like a
‘seed’ or ‘angel; fund), will operate
with the ‘Explore’ mindset. The
idea, its market, its technology and
its commercial model will be
designed and built as a laboratory
prototype with a tailored, initial
version of the business model
canvas. The Evangelist-
Entrepreneur plays a crucial
leadership role in this crucial
phase working with the necessary
mix of people with research,
technology, engineering
capabilities.

If the prototype and related
business artefacts (the ‘Minimum
Viable Product!'?’) are found to be
satisfactory, the idea earns some
more time and resources and
moves to the ‘Engineer-Enable’
mindset. The goal is to go from a
prototype to something which is

INAE TechFrontier

ready for the market. The same
Evangelist-Entrepreneur should
lead the team with more business,
technology and engineering
capabilities. The following 90-day
sprints will deliver engineered,
well-designed artefacts, actual
customer and market trials,
validation of the starting
hypotheses, and a financial plus
risk model.

At this stage, the enterprise will
make the hard choices of which
ideas will go into the last phase,
where the mindset will be to
‘Exploit’ the full potential of each
idea and realise the outcomes at
scale. The entire business will be
fully engaged in the sprints in this
phase, and they will work with the
Evangelist-Entrepreneur with large
investments into a series of sprints
to scale the right ideas. The
‘startup’ will either grow on its
own under their care or may be
‘acquired’ or ‘merged’ by an
existing business.

These 4E mindsets and capabilities
- Explore, Engineer-Enable,
Exploit and Evangelist-
Entrepreneur are equally
important. An individual will
likely be a specialist in only one of
these at a given time and may be
part of one particular project
sprint. Over a period of time, the
depth of experience in the area of
specialisation will be
supplemented by width of
exposure to the other skill sets.
The individual can then choose to
switch from one to the other as
part of their career journeys.

Let us look at the 4E model in
operation through a quadrant 1
example: Plant Automation in
Manufacturing. Here, the idea
aims to leverage Advanced Al and
Computer Vision for improving
the efficiency of operations in a
manufacturing plant. It is
sponsored by the head of Plant
Operations, and the ‘Evangelist-
Entrepreneur’ is the executive

assistant to the sponsor, a fresh
MBA from a leading business
school. The idea has been placed
in quadrant 1 since the aspiration
is to achieve small gains in the core
of the current business. Plant
Operations is at the heart of
manufacturing, and any
Improvement to quality, cost,
throughput, time and safety are
very welcome to the business.
While the goals are modest and
incremental, the means to the
goals include Al and Computer
Vision, both very complex and
advanced technologies.

Let's see what the team is likely to
do in the Explore phase and at the
first review.

The team will be well served if
they identify a pipeline of
problems in the Plant Automation
space, which can be addressed by
available AI and Computer Vision
solutions. The priority in quadrant
1 is to identify the right problems,
identify risks and path to value,
quick deployment and to embed
the outcomes into the core
business.

The team is likely to describe their
status with statements like ‘here is
a problem which is challenging the
throughput and quality in our
main assembly line. Our prototype
has been built with a combination
of technologies which are already
available from partners or built
in-house. We are seeing 2%
improvements in throughput and
4% reduction in our primary
defects. No major risks are
foreseen with the deployment. Our
cost to develop and deploy the
prototype versus the benefit in
terms of savings is attractive. We
seek approval to validate these
results and scale these prototypes
to production’

It will not be surprising if the
Engineer-Enable stage for this idea
is executed by the core of a future
‘Center of Excellence, or CoE The
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one or few prototypes will be the
first of many problems in Plant
Automation which will benefit
from the application of advanced
technology. The ‘Engineer-Enable’
team will need to lay the
foundations for this. The obvious
‘deliverable’ will be to ‘go-live’ with
the final versions of the
prototypes.

This go-live process by itself will
have robust checklists for quality,
risk, reliability, scalability,
serviceability, security and so on.
The benefit case is equally
important — when does the cost of
deploying the innovative new
technologies start paying back in
the actual business.

Since quadrant 1 is largely
internally focused, the
Engineer-Enable to Exploit
transition will be fairly
straightforward. It will ask
questions on the ‘go-live’ steps for
each project but also address the
larger challenge of embedding the
innovative ideas into the core
business capabilities of the
organisation. As we remarked a
few minutes ago a new or existing
Center of Excellence could be the
capability ‘home’ to own this for
the business. It will also be useful
to carry out a ‘freedom to operate’
analysis of the intellectual
property created and used for each
solution. The risk of an IP
infringement lurking in the core
processes of the manufacturing
line is not small and can be
mitigated by either licensing or by
other IP arrangements. The effect
of disclosure of the efficiencies and
other benefits of a purely internal
nature will need to be examined as
well. The publicity and ‘talk value’
of the innovation could focus on
the ‘what has been achieved;
rather than the ‘how was it done’

This example shows how the 4E
model is an adaptation of many
different ways of starting with a
nebulous idea and delivering value

INAE TechFrontier

as an outcome. There are some
similarities with the Technology
Readiness Level (TRL) model*! in
that Explore could be mapped to
TRL 1-3, Engineer-Enable to TRL
4-6 and Exploit to TRL 7-9. The
agile model is used to build in
iterations and active stakeholder
engagement especially with
customers (current or future) and
partners at all stages. This
engagement, especially in the early
stages, helps validate assumptions,
another critical success factor for
any project.

Examples of
Country-Wide Missions

The scope of applicability of
Cyber-Physical Systems is much
more than just a single enterprise.
It could indeed be global'?, or at a
country level.

The vision for Society 5.0 vision of
Japan as a country is illustrated as
follows™:

“The vision of the future society
that Japan should strive towards
that follows the eras of the hunting
society (Society 1.0), agricultural
society (Society 2.0), industrial
society (Society 3.0), and
information society (Society 4.0). In
the 5™ Science and Technology
Basic Plan (Cabinet decision of
January 22, 2016) (Society 5.0) was
first proposed as a human-centered
society in which economic
development and the resolution of
social issues are compatible with
each other through a highly
integrated system of cyberspace
and physical space.”

India has also established a
National Mission on
Interdisciplinary Cyber-Physical
Systems' under the aegis of the
Department of Science and
Technology in 2018. Some of the
goals of the mission are:

1. Focus on Cyber-Physical
Systems (CPS) combining

digital/cyber elements with
physical objects (e.g.
machines, autonomous
vehicles) and data with
capabilities of communication,
data collection & processing,
computing, decision making
and action.

To promote translational
research in Cyber-Physical
Systems (CPS) and associated
technologies.

To develop technologies,
prototypes and demonstrate
associated applications
pertaining to national
priorities.

To enhance high-end
researchers base, Human
Resource Development (HRD)
and skill-sets in these
emerging areas.

To enhance core competencies,
capacity building and training
to nurture innovation and
start-up ecosystem.

To establish and strengthen the
international collaborative
research for cross-fertilization
of ideas.

To set up world-class
interdisciplinary centers of
excellence (Technology
Innovation Hubs or TIH) in
several academic institutions
across the country, that can
become repositories of core
expertise in CPS and related
areas and serve as focal points
for technology inputs for the
industry and policy advice for
the government.

To involve Government and
Industry R&D labs as partners
in the collaboration centers.
Incentivise private
participation to encourage
professional execution and
management of pilot scale
research projects.

To set mission mode
application goals and
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foundational themes for
excellence for different centers.
Set up CPS test beds at various
centers.

10. To tie up with incubation
centers and accelerators to
foster close collaboration with
entrepreneurship eco-system.

11. To address some of the
National issues and
development of sector-specific
solutions.

The mission is led by an
empowered Mission Governing
Board (MGB), supported by an
Inter-Ministerial Coordination
Committee (IMCC) and Scientific
Advisory Committee (SAC).

Each TIH is created as a Section-8
Company, an independent entity

within the HI. A Tripartite
Agreement has been signed by HI,
TIH and the Mission Office, DST
for all the TIHs. Each TIH is
managed by a Hub Governing
Board (HGB) chaired by the
Director of the HI and members
from Academia, Industry and
Government. Other academic
institutes are connected as
SPOKES.

Each TIH creates its own agenda,
assembling its own ecosystem
capabilities and evolving its
execution mechanisms to achieve
its goals. A regular cadence of
review and experience sharing
across the TIH ecosystem
supported by third party reviews
has also been established. Initial
success stories are already

emerging and much more is
expected.

Conclusions

Cyber-Physical Systems have
enormous potential in multiple
disciplines, industries and
domains. Creating an agenda and
traversing the life cycle to
implementation is not an easy task
for a single enterprise, and more
so for nation-wide initiatives. We
have described two possible
methods in this direction. It is
clear that Cyber-Physical Systems
will need a lot of Research and
Innovation in the areas, as much
as the scientific and technological
aspects.
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Abstract

The confluence of Artificial
Intelligence (AI) and industrial
Cyber-Physical Systems (CPS)
enables the realization of
completely automated industrial
processes seeded with due
intelligence, which minimizes
human intervention as well as
human-induced errors. The
present state-of-the-art in CPS
research involves implementation
of Al, including its recent
advances, into machineries and
their components, controlling
systems, monitoring systems. Al
also finds applications in another
important constituent of CPS -
machine-to-machine (M2M)
communication. Of special interest
in the research community is the
development of Al-integrated
Programmable Logic Controllers
(PLCs), which provide intelligent
industrial computing cores and
control systems that can monitor
CPS parameters, analyze threats
and take suitable decisions in
real-time. The virtualization of
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PLC functionalities as software
modules and containers enables

smooth and efficient Al integration

towards further realization of
“Intelligent Connected
Manufacturing" for next-
generation CPS.

Introduction

Rapid advancement of industrial
automation has led to the
emergence of industrial CPS as the
backbone of modern “connected
manufacturing” [1]. Such a
manufacturing schema entails the
heavy use of CPS technologies and
related components that connect
all minute processes through
appropriate networking and
communication in such a way that
the industry as a whole becomes a
singular ‘smart entity’ Traditional
CPS architectures often face
challenges in terms of adaptability,
scalability, and decision-making
capabilities, particularly with
respect to dynamic real-time
changes in industrial parameters.
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Fig-1: “Connected Manufacturing” - Industrial CPS with embedded AI/ML

To address these challenges, the
integration of Al into CPS has
become a necessity that paves the
way for “intelligent connected
manufacturing”, with minimum
human intervention and near
real-time automated decision
making, all the while enhancing
productivity, quality, and safety
[2]. This paradigm shift represents
a critical step toward achieving the
goals of the next-generation of
industrial automation and systems.

Within this emerging landscape,
the role of Al-driven automation is
not limited to conventional
machine learning applications,
but extends to advanced
methodologies such as Explainable
AT (XAI), Generative AI (GenAlI),
and Al-enabled IoT (AIoT). These
technologies empower CPS to
autonomously monitor, analyze,
and respond to operational
conditions, thereby realizing
predictive maintenance, intelligent
fault detection, and adaptive
control. Moreover, distributed
learning approaches such as Split
Learning (SL) and Federated
Learning (FL) allow collaborative
training of AI models across
industrial subsystems, while
ensuring privacy, security, and
scalability. Such innovations
enable manufacturing systems to
evolve from reactive control
mechanisms to proactive,
intelligent decision-making
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entities capable of
self-optimization in real time.

In this light, the recent emergence
of Al-integrated Programmable
Logic Controllers (PLCs) has the
potential to revolutionize
CPS-based industrial control
mechanisms [3]. PLCs form a
fundamental component of
modern industrial processes and
systems, which act as the
computational and control core of
automation systems. PLCs
constitute sensors, industrial
actuators, monitoring and
feedback mechanisms, as well as
failsafe mechanisms. Traditionally,
PLCs have been designed as
monolithic hardware cores that
can support only some specific
types of end connections over
specific protocols. They were not
dynamically programmable or
scalable with respect to
heterogeneous CPS entities [4].
Modern PLCs are being
reimagined as intelligent industrial
computing cores by embedding Al
capabilities directly into the PLCs
and virtualizing their
functionalities as software-defined
modules deployable on containers
or cloud infrastructures [5]. This
allows industries to achieve
significant improvement in
process control and management
with predictive analytics,
maintenance and automated smart

decision making. These
advancements lay the foundation
for next-generation intelligent
connected manufacturing, where
CPS not only executes control
tasks, but also continuously learns,
adapts, and collaborates across
machines and networks. Factories
are now envisaged to become
self-reliant and self-sustaining in
the light of dynamically changing
external factors with minimal or
zero human intervention [6].

State-of-the-Art

Cutting-edge research in
Al-enabled CPS makes use of
sophisticated methods for safe and
intelligent industrial automation.
While GenAl platforms such as
ChatGPT [7] and Gemini [8] allow
natural language interaction with
industrial systems, XAI improves
transparency and trust in CPS
decision-making [9]. According to
surveys such as Singh and Gill on
Edge Al [10], AIoT combines IoT
connectivity with Al for
distributed edge intelligence [11].
SL [12] and FL [13] offer
distributed model training without
sharing raw data in order to
address scalability and privacy.
Modular, cloud-ready, and
Al-driven industrial control is
made possible by the emergence
of Al-integrated PLCs at the
system level through Soft-PLCs
[14], OpenPLC as an open-source
substitute [15], and container-
based PLC virtualization [5].

Enabling CPS with AI:
The Next-Gen Smart
Industrial Solutions

AT has penetrated the present day
societies and industries. Through
known or unknown means, Al is
influencing our everyday lives in
an unprecedented manner. Ever
since the launch and subsequent
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boom of Generative Al-based
chatbots such as OpenAI’s
ChatGPT, Google’s Gemini,
Microsoft’s Copilot, and X’s Grok
Al, we are witnessing the
utilization of Al-based results
across a wide spectrum of
scenarios, from creative art,
computer programming, situation
analysis to threat detection. With
respect to Al-enabled CPS, we can
look into the following exciting
sub-fields of Al research:

Explainable AI (XAI)
Explainable AI (XAI) refers to
a specific Al framework that
provides output that is readily
understood by humans, as
they can “explain” the situation
to human users and the reason
behind the output it has
produced. It takes in a
particular situation or process
as input and produces the
actions required to be taken as
output, clearly explaining the
rationale behind such an
actionable output in a readable
manner. XAl trains on
situations and data in such a
manner that it tries to
understand the underlying
philosophies and principles
guiding the situation and
produces output in an
explainable format. In the
context of Cyber-Physical
Systems (CPS), XAI plays a
vital role by enabling operators
and engineers to understand
why a system takes a particular
action or generates a specific
output. This induces a
transparency and reliability in
Al-enabled decision-making,
which deviates significantly
from “black-box” based
Al-decisions, which are based
only on some input without
providing any underlying
rationale or explanation. By
providing insights into model
behavior, highlighting key
features influencing
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predictions, and offering
human-readable explanations,
XALI fosters trust and
accountability in Al-driven
CPS. XAl enhances debugging
and industrial optimized
output actions which integrate
not only heterogeneous CPS
behavior but also incorporate
their various state changes,
reasonings and performative
actions as well, at par with
industrial standards.

Generative AI (GenAl)
GenAl is perhaps the most
disruptive technology to
revolutionize the modern
computing sphere. Through
various GenAl platforms such
as OpenAI’s ChatGPT [7], X
Corporation's Grok Al [16],
Meta’s Llama [17], Google’s
Gemini [8], Perplexity [18],
GenAl enables the
“generation” of new contents
such as articles, images, and
text based on some input and a
trained model on relevant
data. With respect to CPS,
GenAl provides a framework
for Al-enabled User Interface
(UI) design whereby industrial
managers and technicians are
provided with simplified Uls
to their on-site PLCs and other
monitoring devices, such that
they may ask for any queries or
data using natural language
prompts. The GenAI model
can successively respond in
similar natural language-based
generated texts along with
appropriate graphics for fast
processing and information
analysis, which leads to a
significant reduction in
analysis time by human agents,
lesser stress, and improved
productivity.

Artificial Intelligence of
Things (AlIoT)

AloT amalgamates Al with the
IoT technology [11]. It must be
noted that industrial CPS are

inherently synonymous with
IoT, especially Industrial IoT
(IToT') based technologies. The
latter provides the relevant
networking, sensing,
actuation, data processing, and
analytics backbone of any CPS.
Therefore, unifying IoT with
Al by default leads to the
development of Al-based CPS
as well. While IoT provides
pervasive connectivity through
a network of sensors, actuators,
and devices, Al empowers
these connected elements with
the ability to analyze data,
learn patterns, and make
autonomous decisions in real
time. Of special interest is the
utility of Al in achieving
distributed intelligence across
the edge [10], which empowers
IoT-based industrial nodes
such as sensors and actuators
to have on-board Al engines
that can analyze data in situ
and take real-time decisions.
While XAI and GenAl, as
mentioned above, are specific
Al techniques, AloT can be
considered as the enabling
technology towards achieving
a truly intelligent CPS
ecosystem in modern factories.

Split Learning (SL) and
Federated Learning (FL)
Shifting from generic Al
methodologies, we also focus
on specific niche areas of
Machine Learning (ML),
which are the actual
under-the-hood engines of Al
systems. We are especially
interested in the concepts of SL
and FL. Traditional ML
algorithms employ models
such as deep neural networks
on a single processing device
to be trained with relevant
input data. However, with the
increase in data set, complexity
and variability of the data as
well as increased information
content, training a neural



network on a single device
becomes challenging with an
increased number of neurons,
hidden layers, and training
parameters and latency [19].
Therefore, of late, SL has been
proposed, whereby a single
large neural network is divided
into segments, with each
segment containing a part of
the overall neural network and
executed over a single device,
with multiple such segments
executing over different
hardware cores. A
communication channel exists
between the segments and the
cores over which they execute
forward and backward
propagation algorithms to
train the full network. SL
essentially splits a neural net
into dependent segments or
sub-networks, with each
sub-net being executed over its
own device/cores, which
allows the realization of a
single large ML network over
distributed nodes that lessens
the burden on each node.

On the other hand, considering
data privacy issues, there is a
consistent requirement that local
data gathered by sensors cannot be
sent in raw form to a remote cloud
over which they may be trained.
This issue is particularly relevant
for industrial scenarios, as raw
sensor data from critical zones
should not be transferred over
unsafe channels from where they

o
o

Learning - )
SL/FL

o
Explanability - Generation -
XAl | GenAl

Intelligence in
Industrial CPS

Intelligence -
AloT

may be intercepted. It is here that
FL comes in useful, where sensor
data that is gathered is stored
locally on the device, and a
lightweight ML model trains on
the said data. A group of such
locally trained models are then
sent to a central aggregator, which
performs a global aggregation of
the models to reach a universally
trained model that can then be
used for predictions and
monitoring. FL forms an extremely
important tool for enabling
next-generation smart CPS,
whereby data gathered from the
local edge CPS nodes is trained in
situ and the industrial controller
can be used to aggregate the local
models to obtain a global view,
without the loss of data privacy or
the fear of data breach in transit.

Fig-2 displays the modular design
for an intelligence enabled
“thinking industry” whereby the
backbone CPS network is assisted
by relevant ML/AI verticals, each
of which provide their relevant
aspects of learning and cognitive
abilities.

o Applications of Smart
Programmable PLCs
We now come to a specific
application of Al-enabled CPS
for the Next-Generation
industry, through the design,
development and
implementation of smart
programmable PLCs. As has
been mentioned in Section I,
PLCs form the computational

Fig-2: A “Thinking Industry” - AI modules for Industrial CPS
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core and brain of industrial
sensing, monitoring and
actuation systems, which
integrate in real-time with
industrial components. The
current shift from traditional
monolithic PLCs to
proprietary hardware to
software-based PLCs has
opened up a new frontier for
easy Al integration through
principles of modular design
and architecture. This overall
concept of Soft-PLC realizes
PLC functionalities on
general-purpose hardware as
fully software modules with
integration with XAI, GenAl,
and modern learning
principles [18]. In this light,
the following design principles
of smart PLCs are worth
investigating.

o Virtual PLC
As their name suggests,
virtual PLCs are a special
type of PLCs whereby all
the PLC functionalities are
executed as virtual
functions over
general-purpose processing
hardware. Their design
principles centre on
virtualization, modularity,
interoperability, and
cloud/edge integration,
allowing them to seamlessly
integrate into connected
manufacturing ecosystems.
For example, CodeSys [20],
TwinCat [21], and
OpenPLC [15] are some of
the popular software
implementations of
hardware PLCs where
suitable virtualized
modules can be integrated,
allowing direct injection of
Al methods within the PLC
core.

o Cloud PLC

Cloud PLCs extend the
functionality of traditional
PLCs by virtualizing the
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relevant modules and
deploying them over a
remote cloud platform
rather than being deployed
over local hardware
devices. The main
difference from the virtual
PLC:s lies in the fact that
the soft PLC codes are
deployed over the cloud
through suitable PaaS/IaaS
enablers, whereas generic
virtual PLCs have their
modules over local but
general-purpose hardware.
This shift enables
unprecedented scalability,
flexibility, and remote
accessibility for industrial
control systems. Cloud
PLCs can integrate
seamlessly with advanced
AI/ML pipelines,
predictive analytics, and
digital twins, enabling
smarter and more adaptive
control strategies. A major
concern of Cloud PLCs lies
in maintaining seamless
connectivity between the
remote cloud and the edge
CPS devices in a manner
that does not disturb the
real-time processing and
performance of the
systems.

o Containerization in PLC
Extending the concept of
virtual PLCs,
containerization in PLCs
refers to a particular
implementation
mechanism, whereby the
virtual PLC modules are
realized as independent
and self-sufficient
containers over a virtual
execution platform [5],
instead of being realized as
open functions. This
simplifies the virtual PLC
design procedures as
specific local containers
with unique execution
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environments are deployed
for PLC-specific tasks, with
suitable interfacing
between the containers for
seamless data transfer. In
such an architecture, the
relevant AI/ML modules
can themselves be realized
as self-sufficient containers
with unique features that
do not directly integrate
with core PLC logic but
achieve intelligence
through safe interfacing
between containers. Ease of
debugging and modularity
in design are the most
suitable benefits of having
containerized PLCs.

Overall, the various
implementations of SoftPLC
realize intelligent, adaptive, and
collaborative computing cores for
next-generation industrial CPS.
By embedding advanced Al
capabilities and leveraging
distributed learning paradigms,
these virtual PLCs not only
execute deterministic control tasks
but also evolve into proactive
decision-making units that can
optimize, explain, and
autonomously adapt in real time,
towards achieving “connected
manufacturing” in a true sense.

SoftPLC Development
Principle

The Smart Wireless Applications
and Networking (SWAN)
Laboratory in IIT Kharagpur [22]
have recently taken up the
challenges of designing an efficient
Al-enabled virtual PLC for fast
industrial adoption and based on
real-time requirements.

Fig-3 displays the laboratory scale
twin PLC training kit available in
SWAN Lab that contains
traditional hardware PLCs for

Fig-3: Smart PLC Training Kit
at SWAN Lab - Automated CPS

their analysis, a human-machine
interface (HMI) for interacting
with the PLCs. This PLC training
kit enables study, analysis and
experimentation with hardware
PLCs for better understanding and
protocol extraction, using which
suitable software modules can be
developed for virtual PLCs.

Fig-4: Realizing VirtualPLC over
Raspberry Pi - Generic Computer

Fig-4 displays the development of
such a virtual PLC over a
Raspberry Pi which acts as the
general purpose computing
hardware and execution platform.
As shown in Fig-4, the virtual PLC
cores can be modified through
software as per requirement, with
which suitable AI/XAI modules
can be integrated that can provide
real-time explainable feedback-
cum-decision for real-time
industrial CPS inputs.
Additionally, SL/FL are being
implemented over a distributed set
of such virtual CPs for collective
edge learning, whereas GenAl
integration with the
human-machine interface (Fig-3)
can provide natural language
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prompt-based interfacing for both
input and output data.

Conclusion

As we herald the age of Al the
future CPS and industrial
automation must also integrate
Al heavily in all its aspects.
Armed with exciting concepts
such as XAI, GenAl and AloT
along with its suitable sister and
enabling technologies such as
Split and Federated Learning,
the Next-Generation industries
will see a revolution of connected
components, where Al agents can
gather data, perform analytics
operations, understand the
situation and its threat in human
terms and act accordingly in
real-time for most efficient
situation mitigation with minimal
or no human intervention. This
“situational awareness” of CPS
architecture through AI will
indeed make an industry a
“living” entity with its own brain
and heart. As a specific
application, PLCs are already
being softwarized for convenient
Al integration, and we hope to
usher in a new generation of
“connected manufacturing”

in its true.
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Introduction

Artificial Intelligence (AI)-based
solutions have been leveraged in
materials engineering applications
for several decades. The initial
efforts included defect
classification for NDT tests (Ref
1), predicting impact toughness of
welded joints (Ref 2) to error
estimation for control systems in
steel mills (Ref 3). Most of these
early applications of Al in the
metallurgical industry had roots in
academia or proprietary control
solutions from automation service
providers. During the last decade,
Artificial Intelligence and Machine
Learning (AI/ML) have been
democratized due to (i) the
adoption of the fourth industrial
revolution (Industry 4.0) (Ref 4)
and the resultant digitalization,
with data becoming available
across the processes and business
value chain, (ii) more affordable
on-premise as well as on-cloud
compute capabilities, (iii)
accelerated democratization of
AI/ML through digital upskilling
and the availability of low-code
and no-code tools, and (iv) a
growing pool of recent graduates
across engineering disciplines
equipped with AI/ML skills (Ref
5). This has resulted in rapid
digital dexterity across industries,
enabling low-cost
experimentations. However, even
with widespread adoption of Al
methods, a recent 2025 study by
MIT has reported (Ref 6) that out
of $30-$40B enterprise
investments on GenAl adoption,
95% of organizations experienced
zero business impact (Ref 6). The
core barriers were not found to be
infrastructure, regulation or talent
but contextual adaptation and the
ability to improve model
performance over time.

Al Applications in
Metallurgical Sectors
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Metallurgical sectors span a very
diverse range of industries, from
primary metal producers to
original equipment manufacturers
(OEM) for automotive, agriculture
machinery, construction and
mining equipment, aerospace, and
home-appliances manufacturing.
Additionally, tier one and tier two
suppliers, such as foundries,
machining, heat treating, metal
forming, and forging, support the
OEMs. Each of these
manufacturers operates in a
distinct context with varying
complexities.

Primary metal producers, such as
integrated steel plant, primary
aluminum, copper or zinc
producers are essentially process
industries, with large raw material
processing capabilities. They
produce liquid metal and
subsequently form it into standard
solid products, such as bars, rods,
plates and sheets. For example,
integrated steel plants produce
steel of standard grades, defined by
chemical composition, and
thermomechanical processing
(hot-rolling, annealing, cold
rolling) to achieve the specified
mechanical properties. The design
complexities (in terms of shape
and forms) for the primary metal
producers are relatively low,
allowing a focus on high-volume
production lines (Fig-1). The
scope of AI/ML deployments in
such organizations includes the
discovery of new alloys, process
optimization and control of unit
operations with an objective of
cost reduction, energy reduction,

first pass yield and productivity
enhancement (Ref 7-9).
Furthermore, scheduling processes
and material flow in this sector
become very important for the
process and cost optimization. Al
has also been extensively leveraged
for asset management and
preventive maintenance among the
primary metal producers.

OEMs have undergone significant
digital transformation during the
last decade with their connected
and intelligent product offerings
for their customers. These product
offerings have also helped them
develop and mature their in-house
Al capabilities, with an impact on
internal business processes and
manufacturing operations. OEM
products (e.g. automotive,
agriculture and construction
equipment, aerospace, computers,
mobiles and home appliances)
comprise tens of thousands of
individual components, sourced
from tier one and two suppliers
across the globe and assembled in
their factories. The design and
process complexities of these
individual parts are significant,
leveraging diverse operations (e.g.
forging, casting, machining,
welding). Some of the Al
applications in the OEM include
logistics, material flow and
inventory control, cost prediction
of individual parts, rational
choices among material-process-
sourcing, process monitoring,
asset management and preventive
maintenance. In addition, in OEM,
Al also gets leveraged for design
optimization (e.g. casting), process

Operational
Efficiency, Quality Roll-pass
Sustainable Steel optimization,
development Yield, Quality
N 4 ’ ‘ Metal ’ ‘ . ’ ‘ Metal | Heat
[ Alloy Design Refining Foundry T Treatmsent ]
Al Assisted Generative Design, Pre‘.iicti\‘e
accelerated alloy Al assisted gating, Maintenance,
development . Operational Prot?es's']:.llaerg_\'
(aluminium / steel) efficiency, Quality Optimization,

Fig-1: Examples of Al leverage in metallurgical industries
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optimization (e.g. casting,
machining, heat treating),
material optimization (e.g.
material choices, steel grade
selection) and managing defects
and quality (e.g. casting defects,
welding distortion, failures in shaft
and structures).

o Al Applications for Insights
Across Process Chain

Although first principle
mathematical models have been
leveraged in metallurgical unit
processes for decades,
through-process models across
unit processes are very challenging
due to dependence on multiple
upstream unit processes. The
availability of data across the
process chain provides significant
opportunity to develop AI/ML
models for the entire process
chain. This is illustrated, along
with limitations, in the following
example of deep drawing grade
steel.

Reheating
Fumace

bl
. R
Hot Rolling Cold Rolling Anij::ll:ng jl

characteristics at the end of the
process chain strongly depend on
all the process steps illustrated in
this figure. For example, in case of
Aluminum-Killed (AIK) deep
drawing grade steel, reheating
temperatures are intentionally kept
high to retain AIN precipitates in
solid solution. Furthermore, to
prevent premature precipitation of
AIN in hot rolling mill, coiling
temperature at the end of the
hot-strip mill are kept low. Precise
control of these process
temperatures promotes AIN
precipitation during the very slow
heating phase of batch annealing
process. The precipitation of AIN
at the sub-grain boundaries during
the batch annealing process
retards the recrystallization and
promotes preferred {111} texture,
with high deep drawing
characteristics (Ref 10).

Requirements and context
significantly change for different

Stamping

:_ Hot Rolling Mill | '

—— e ————————

Cold Rollmg Mill  F

O 2

|OEM Supp]le

Fig-2: Interconnected process chain for deep drawing steel

The process chain for producing
deep drawing steel suitable for
automotive panels is given in
Fig-2. These process steps are
carried out in two or three
different organizations. Reheating
and hot rolling operations are
carried in a hot-strip mill, whereas
cold-rolling and annealing
operations are carried out in a
cold-rolling mill. These two
unit-operations may be part of the
same integrated steel plant or there
can be stand-alone cold rolling
mill, which procures hot rolled
coils from other organizations.
Deep drawing operations are
invariably carried out at the
automotive tier one or tier two
suppliers, which are not part of the
steel plant. Deep drawing
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material grades (steel grade
changing from AIK to
interstitial-free (IF) steel) or
different process (annealing
changing from batch annealing to
continuous annealing). These
subtle process interactions are
insights from several decades of
engineering research of physical
metallurgy and are leveraged for
designing these process steps (Ref
10). However, these insights are
primarily empirical in nature,
without a comprehensive first
principle based through-process
model. AI/ML approaches provide
an opportunity to create such a
model based on the process,
material and operational data. For
example, from a stable upstream
process (known material sources

and consistent process), material
certificates can be used to predict
the stamping quality using AI/ML
models.

There are several such examples of
inter-dependent metallurgical
processes and their impact on the
final product quality. AI/ML-based
approaches make such highly
complex process chain modeling
tractable due to the availability of
significant volume of material and
process data. These models can be
leveraged for process optimization
resulting in productivity
enhancement, energy reduction
and defect reduction.

o Al Application in Additive
Manufacturing

Additive manufacturing is a
disruption at the intersection of
materials, design, manufacturing,
and supply-chain, where a 3D part
or an assembly can be created
through layer-by-layer deposition
of the powders (Ref 11). Additive
manufacturing provides unique
manufacturing advantages, such as
(a) the ability to create parts
without any upfront tooling costs,
which provides business
opportunities for rapid
prototyping and production of
spare parts for old machines or
low volume production parts, (b)
the ability to create high
performance parts with complex
designs, which is not possible in
traditional manufacturing
processes, (c) the ability to
precisely repair a damaged part, a
capability extensively used in
aerospace engine repair and
maintenance.

AI/ML methods have been
increasingly finding utility in
additive manufacturing, including
generative design, material
discovery, manufacturing process
optimization, in situ process
control, and property predictions.
Some of these applications have
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been outlined below (Ref 12-15).

o Additive Design: The
unconstrained design
possibilities from additive
manufacturing can be
leveraged by optimizing
designs through Al
tool-sets. For example,
deep neural network ML
methods have been used
for quick design iterations
and efficient topology
optimization (Ref 16),
whereas CNNs have been
leveraged for training the
intermediate topologies
rendering design process
20x more efficient (Ref 16).
In addition, Generative
design tools leverage ML
algorithms to generate and
optimize vast design space
possibilities, meeting the
performance requirements
from the structure (Ref 17).

o Material Discovery: The
combinatorial possibilities
of leveraging material type
and their volume fraction,
size, and geometry
provides significant
opportunities for creating
phases and microstructures
at specific locations as well
as creating graded or
composite structures.
Material discovery also
provides unique
opportunity for leveraging
AI/ML methods in additive
manufacturing, including
accelerated material
development, solving
inverse problems of
identifying constituents for
target material properties.
High throughput
experiments integrated to
machine learning
algorithms can be
leveraged for accelerated
discovery of novel
materials.

o Process Optimization:

INAE TechFrontier

Additive Manufacturing
process optimization is one
of the highest use cases for
AI/ML applications.
Optimizing process
parameters such as layer
height, printing speed,
laser power, part
orientation, temperature,
and material type for target
properties is very effective
through AI/ML models.
These models can also be
efficiently deployed in the
real-time process control.
ML methods like K-mean
clustering have been used
for optimizing the build
orientation and direction
of the parts. Furthermore,
based on the historical
datasets, the pre-processing
steps as well as
post-processing heat
treatment can be integrated
through AI/ML based
models. Such integration of
multiple processing steps is
more complex and
challenging through
conventional first
principles modeling than
AI/ML based modeling
approaches. AI/ML based
defect prediction and
control tools have been
used for improving the
quality of additive
manufactured parts (Ref
13, 15, 16).

Generative Al and Its
Near-Term Applications
in Materials Engineering

Generative AI (GenAlI) gained
widespread attention two years
ago with the public release of
ChatGPT by OpenAl. It attracted
over one million users within a
short period, making it the fastest
growing new application. Since
then, there have been several

commercially available GenAl
tools for natural language
processing and conversation,
computer vision, and multimodal
models combining vision and
language (Ref 18, 19). Generative
AT has been envisioned to be a
transformative technology, which
can revolutionize the way
materials are discovered or
designed (Ref 20), processed or
manufactured, and used for
engineering realization (Ref 21).
Nevertheless, breakthrough
applications that have truly
revolutionized materials
engineering-related industries
remain limited. This section
envisages four realistic near-term
applications of Generative Al.

GenAlI Aided streamlining
materials information for materials
science and engineering groups:

Many materials science and
engineering groups, in academia,
research, or industry have
accumulated knowledge bases of
several decades. These knowledge
bases are (a) primary data
collected from laboratory
experiments, validations at pilot or
industry scale, and quality test
data, (b) contextual, team specific
information, such as laboratory
notes, internal technical reports,
standard operating procedures,
analysis reports, quality reports,
and trade-secrets, (c) computer
codes generated for various
transformations, modeling and
simulations, and their results in
varied forms, (d) scientific
literature including standards,
journal and conference papers,
and patents. Furthermore, this
information is multimodal,
encompassing microstructure
images, X-ray diffraction patterns,
videos of in situ examination
studies, crystal structure, text data,
formatted data obtained from
various tests, mechanical property
test results in graphical form.

Many materials engineering teams
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have envisioned a knowledge
management system for their
group, and many have collated
knowledge within their group in
the form of SharePoints, wiki
pages, or even hierarchical file
structures on their computer
systems. However, due to the
multimodal nature of these
knowledge bases, these attempts
are often reduced to static
repositories without inference
engines or conversational
capabilities. Generative Al
provides an unprecedented
opportunity to create a large
language multimodal model from
these diverse knowledge bases
with possibilities to create outputs
in varied formats. Furthermore,
this system can evolve over time,
not only with updated data but
also with improved capabilities
and accuracy. This system will also
accelerate the engineering
workflows, automating analysis
protocols and report generation.
Many of these ideas are already
being realized through contextual
large language GenAl models.

GenAl aided Democratization of

Computational Materials
Engineering:

One of the prominent usage of
GenAl in the software sector is
accelerating the software
development through automated
code generation. Computational
materials engineering and process
modeling simulation development
have been very niche skilled jobs.
There is shortage of skilled
personnel in this space and
developing this competency in an
organization takes significant
effort. A projected near term
application of GenAl in materials
engineering is the democratization
of computational materials
engineering. GenAl can accelerate
engineering workflows, improve
efficiency in model creation and
help standardize the codebases.
Over time, it can also significantly
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reduce the time required to
incubate this competency for new
teams or organizations.

GenAl enabled tools to aid
designers for materials selection in

also promote organizational
consistency for the materials
selection process driven by design
engineers.

GenAl enabled expert system for

Original Equipment Manufacturers
OEM):

In Original Equipment
Manufacturer (OEM), several
materials engineering related
decisions are made by adjacent
functions, such as design
(materials selection),
manufacturing (materials
processing recipe), quality
(conformance to specifications),
and supply chain (alternate
materials grade for different
geography). For example,
designers typically select materials
types or grades based on their
heuristic knowledge or by copying
materials specification from
similar parts used in the
organization. Many of these
selections go wrong and are
rectified through issue resolution
or continuous improvement
processes. It must be noted that
the specification of a material
grade in an OEM has nuances
such as its ability to meet the
functional requirements, its
manufacturability, its availability
in the manufacturing location, low
cost, and meeting sustainability
considerations. Furthermore, for
OEMs having manufacturing
facilities in multiple geographies,
the equivalent grades in different
countries meeting the
organizational grade standards
becomes cost imperative. In such
complex operating environments,
designers having their preferences
and biases on materials selection
and materials processing selections
lead to a divergent material palette.
GenAl provides an attractive
alternative to create materials
selection tools — from the existing
parts data, internal and external
materials standards, and cost data
from supply chain. Such a tool will

Failure Analysis:

Failure Analysis is a specialized
skill and most organizations have
only a few experts with this
expertise. GenAl provides an
opportunity to collate all the
historical failure data in varied
forms including images,
microstructure, test reports,
warranty, and service records.
Furthermore, all the historical
remedial actions can be stitched
together along with impact.
Subsequently, GenAl tool can
create an expert system from this
varied dataset, with an ability to
diagnose new failures as well as
providing their remedial measures
from similar parts failure in the
past. Such systems were attempted
in the past, but mostly with
unimodal datasets. GenAl enables
a fresh approach using multimodal
organizational databases,
capturing operating context and
their evolution over time to
improve accuracy and utility.

Conclusions

There are significant
opportunities for leveraging
AI/ML in diverse metallurgical
industries, ranging from primary
metal producers to OEMs and
tier one or two suppliers of
OEM:s. The context of each of
these industries is different and
therefore requires intentional
identification of opportunities.
Several specific AI/ML
opportunities have been
highlighted in this chapter. It is
important to judiciously leverage
engineering knowledge, and the
first principle-based modeling
approaches evolved over several
decades in conjunction with
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AI/ML models. AI/ML models
are more efficient for creating
surrogate models from
first-principle models or directly
from operational data of
interconnected processes. Such
models are effective primarily in
the operational regime from
which the data has been
obtained. They are less effective
(necessitating complex
formulations), in solving
complex non-linear problems or
discovery problems (e.g.
developing new alloys).
Additionally, in the industry
context, (i) return-of-investment
of AI/ML effort, (ii) alignment to
business strategy and functional
priorities, (iii) creation of
standard solutions integrated in
the functional workflow with
scaling capability, (iv) strategic
development of AI/ML
capabilities, and (v) being
intentional about responsible AI
development while managing
risk, become key considerations.
It is important to note that
AI/ML is an evolving domain
with significant business
opportunities, and some of these
issues will be resolved during its
maturity journey.

This article is an excerpt from
few chapters of upcoming ASM
Handbook on AI/ML
Applications in Materials
Engineering (Vol 26).
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Cyber-Physical Systems
over Wireless
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Introduction
o Cyber-Physical Systems

The term Cyber-Physical Systems
(CPS) was coined in a US
National Science Foundation
white-paper by Baheti and Gill in
2011 [7]. Any CPS is concerned
with controlling and optimising
the performance of a technical
system associated with a physical
domain. Examples would be a
moisture and nutrition control
system for a farm, a water quality
control system for a city, or the
structural safety monitoring
system for building or a bridge.

Fig-1 depicts a layered view of
Cyber-Physical Systems. Evidently,
each CPS system design would
depend crucially on the physical
aspects of the domain, which is
why this aspect forms the
lower-most layer. Embedded in the
domain would be sensors and
actuators; for example, soil
moisture and nitrogen sensors,
and associated systems for
watering and applying nitrogen
supplements. Since the domain
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could be remote (as in a farm), or
the sensors and actuators could be
mobile (for example, drones as
sensors and actuators), a
communication network (often
based on wireless technology)
would connect the top-most layer
of the CPS hierarchy to the sensors
and actuators. Finally, the top layer
of a CPS comprises the computing
and the algorithms for making
inferences about the physical
domain (“Is there a pest infestation
in the farm? Which pest? Where?”),
making decisions (e.g., a 100 sq m.
area to the North-East of the farm
has an infestation that needs to be
treated by a particular pesticide),
and taking actions by, for example,
sending some drones carrying
pesticide to be sprayed, in a
focused manner, over the area of
incipient infestation.

Although named as such for the
first time in [7], CPSs have existed
since microprocessors and
microcontrollers began to be
embedded into industrial control
systems, soon after their advent in
the 1970s. For example, the Bosch
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fuel injection system had already
incorporated microprocessor
based control in 1979 [1]. Such
systems could be called monolithic
Cyber-Physical Systems, since the
sensing, communication, and
control were tightly coupled by
dedicated communication links

key enabler for future technology
developments”. Indeed, the
convergence of computing,
communication, and control is
one of the key aspects of modern
Cyber-Physical Systems, and is
also the aspect that has driven
some of the research efforts of the
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Fig-2: Control over wireless in an Industrial Cyber-Physical System

inside the fuel-injection system.
Fig-1, on the other hand, has a
larger vision, as it includes the
concept of a networked CPS, in
which the components, the
domain, with embedded sensors
and actuators, and the inference
and control could be separated by
a communication network, wired
or wireless. Indeed, the entity
being controlled could itself be in
many locations for example
surveillance drones, with the
inference and control being
distributed as well.

Quoting from the Baheti and Gill
white-paper, “The ability to
interact with, and expand the
capabilities of, the physical world
through computation,
communication, and control is a
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authors of this article.

o Industrial CPS over Wireless
Networks

Industrial Cyber-Physical Systems
for Industry 4.0 will comprise
fixed machines, robots, guided
vehicles, drones, etc., all
internetworked with
edge-computing. The
communication fabric of these
systems would necessarily be
wireless networks, to enable
mobility. Even for condition
monitoring of fixed machine,
where machine mounted sensors
are connected to the edge-
computing, wireless connectivity
would be favoured, to avoid the
engineering, deployment, and

e
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maintenance costs of electrical or
optical cables. Further, retrofitting
of existing legacy factories with
modern Industry 4.0 applications,
would be more easily achieved
with wireless communication
between the components. For high
speed indoor wireless connectivity,
the dominant technologies today
are Wi-Fi (as standardised in the
IEEE 802.11 series of standards)
and 5G-NR (as standardised by
3GPP (Third Generation
Partnership Project)).

Wi-Fi, originally, a technology for
indoor wireless access to the
Internet (indeed, called the
“Wireless Ethernet” at that time)
has evolved from 2 Mbps PHY bit
rates! to Wi-Fi 7 (IEEE 802.11be)
which can offer PHY bit rates in
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excess of 23 Gbps. Air-time access
in Wi-Fi is, however, based on
random access and there are no
mechanisms for global network
coordination, which leads to Wi-Fi
network not being able to
guarantee bulk transfer
throughputs, nor latency bounds.
Several techniques have been
introduced in IEEE 802.11ax
(High Efficiency WLAN (Wireless
Local Area Networks)), such as
Spatial Reuse where the aim is to
dynamically manage the
transmission power and the carrier
sense threshold when there are
overlapping cochannel BSSs2.
Another feature called Target
Wake Time (TWT) has been
introduced, where an AP (Access
Point) negotiates sleep-wake
schedules with an associated STA
(Station) or group of STAs such
that these STAs are active only in
their respective wake periods and
sleep otherwise, thus reducing
contention. However, these
features cannot be properly
utilized to achieve globally optimal
network performance, without
coordination among the APs.

On the other hand 5G-NR has
evolved from cellular technology,
can provide PHY rates of up to 10
Gbps, over 100s of meters
outdoors, is centrally managed,
and can provide finegrained QoS
(Quality of Service) to flows.
Although designed for cellular
networks, with the requirements of
Industry 4.0 in mind, there is
increasing impetus towards
deployment of 5G-NR networks
for such industrial control
applications requiring high
throughputs and tight latency
bounds.

There is widespread deployment
of Wi-Fi networks in campuses,
enterprises, and even factories,
and there is rapid emergence of
5G-NR private networking
solutions. Given, however, the
aggressive cost-points of Wi-Fi
technology, and the complexity of
even the simplest 5G-NR
deployments, it is important to
explore a converged wireless
interconnection network
comprising Wi-Fi and 5G-NR
subnetworks, disjoint or
overlapping. Each technology
should have controls that can
provide certain types of QoS. For
example, ADWISER technology
[40], developed in the ECE
Department, IISc, can provide
globally optimal TCP?
throughputs across multiple APs,
while prioritising downlink
real-time flows, such as video. On
the other hand 5G-NR, with
proper scheduling, can be
configured for a variety of QoS
profiles. Thus, in a factory setting,
for some applications, the less
expensive and ubiquitous Wi-Fi,
enhanced with ADWISER would
suffice, whereas for applications
requiring tight latency bounds
5G-NR would be required. In
situations where a certain QoS
profile is available across both
technology, the converged Wi-Fi
5G-NR network should support
QoS-handovers either way.

A major technical problem
encountered, when the controller
(running in the edge-computer)
communicates with the controlled
system over a wireless network
(Fig-2), is that the measurements
and the controlled commands
encounter the deficiencies of the

The acronym “PHY” refers to the technologies at the physical layer, i.e., the technologies used for
transmitting information bits over a physical medium, such as an optical fibre or a radio frequency

(RF) channel.

2A Basic Service Set (BSS) is an access point (AP) along with all its associated stations (STAs).

*Transmission Control Protocol: the end-to-end procedures in the Internet that provide a reliable
transfer service over the unreliable packet transfer service provided by the Internet.
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wireless network, as shown in
Fig-2. The wireless network can be
designed and dynamically
controlled in a way that the
deficiencies (such as latency) are
within limits. Yet, it is now
well-known that such a situation
requires new considerations to be
brought into the design of the
controller, to account for the
limitations of the wireless
communication network [36],
[31], [37].

o State of the Art

Industry 4.0 is characterised by
multirobot systems, edge analytics,
and a variety of information and
communication technologies [10].
These technologies are expected to
assist in condition monitoring,
networked control, online
optimisation, and the development
of digital twins. These applications
come with different levels of
requirements for the supporting
wireless network, in terms of
reliability, latency, connection
density, service area, etc.
Comprehensive sets of such
requirements for different
industrial scenarios are described
in [26] and [41].

Decision and control over wireless
networks: Problems in the
inference and control over
resource limited wireless networks
have been studied since the 1980s
and advances have been made on
several fundamental questions.
The authors of [37] survey the
classical literature on inference and
control over wireless, pointing out
that these papers consider limited
abstractions, relax an ideality in
the original model, and provide a
complete rigorous analysis. The
problems arising in practice would
have many aspects to consider in
the same formulation: e.g., the
effect of communication
nonidealities on the controlled
system, and also the management
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of the wireless network. They
point out that it will, in general, be
prohibitively expensive to match
wireline quality of service over
wireless networks. But in many
applications, the QoS provided by
wireless networks might suffice,
with proper design of the wireless
network controls, and of the
controls that run over the wireless
network. The designs will be
situation dependent, and, in
general, it would be interesting
(though complex) to consider
joint design of the controls of the
network and control over the
network.

A formulation of statistical
decision making over a wireless
network has been studied in [25],
where the decision to send the
command is based on the feedback
of the channel condition.

The authors of [36] consider a
linear time invariant system, with
Gaussian plant and observation
noise, and quadratic loss. The
observations and the control
commands can be lost in the
wireless network. They show that
classical separability holds only if
the plant acknowledges the receipt
of a control command or loss
thereof. Further, the system is
stabilisable only if the loss
probabilities are lower than
certain thresholds. [31] also
consider a system similar to the
one studied in [36], but they
include random delays in the
wireless network, both for the
observations and the control
commands.

The authors of [24] jointly
optimize sampling, control,
congestion control and scheduling
policies. The paper [28] considers
multiple remote estimation
systems equipped with a common
auxiliary channel at a lower
frequency band, and provides an
algorithm to decide which node
should use the auxiliary channel,
in order to jointly optimize
estimation error and energy
consumption. Age of Information
(Aol) based transmission
scheduling and control have been
analysed in [27, 15]. Finally, the
paper [3] proposes a distributed
value-of-information metric for
scheduling and control where
multiple control loops share the
same wireless medium.

QoS management of Wi-Fi
networks: IEEE 802.11ax (High
Efficiency WLAN (HEW)),
introduces techniques such as
Spatial Reuse [42, 39] where the
aim is to dynamically manage the
transmission power and the carrier
sense threshold when there are
overlapping BSSs. Another feature
called Target Wake Time (TWT)
[30] is introduced, where an AP
negotiates sleep-wake schedules
with an associated STA or group of
STAs such that the STA or group
of STAs are active only in their
respective wake periods and in
sleep otherwise, thus reducing
contention. However, there appear
to be no network-wide
mechanisms to utilize either
Spatial Reuse or TW'T to achieve
globally optimal network

-~

+5G
)

GTP Tunnel - User
Plane

Fig-3: Wi-Fi and 5G convergence based on the N3IWF module
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performance. Also, the efficient
implementation of these features
requires coordination across APs
the network. IEEE 802.11be (Wi-Fi
7, or Extremely High Throughput
(EHT)) proposes Multi-AP
coordination [5] which is expected
to enable these features.

5G-NR networks for factory
automation: 5G-NR is designed
with many new capabilities and
features such as a wide range of
radio bands, carrier aggregation,
dynamic MAC, and sub
millisecond slot scheduling, in
principle capable of delivering
ultra-high (aggregated) peak bit
rates and ultra-low latency [32]. In
the existing 5G standard, a
flow-based QoS framework is
utilised, incorporating a new
Service Data Adaptation Protocol
(SDAP) sub-layer for mapping
flows with specific QoS
requirements to preconfigured
Data Radio Bearers (DRBs),
which, in turn, by configuring the
MAC scheduler to provide various
QoS profiles [43]. In [23], the
simulation studies show the
requirement of a high density of
5G radio units (RU) to cover a
factory floor to support the QoS
requirement under URLLC (Ultra
Reliable Low Latency). However,
this dense deployment may result
in significant cost inefficiencies.

Wi-Fi 5G-NR convergence:
Standards bodies have defined
policies and architecture to enable
the interworking of 5G and Wi-Fi
access networks [2]. As per the
architecture proposed, the Wi-Fi
network is connected to the 5G
core via a gateway function called
N3IWFE as shown in Fig-3. It
supports authentication,
transportation of data and
management of the 5G UEs
connected through the Wi-Fi
network. The N3IWF
communicates with the AMF/SMF
(two signalling and session
management related core functions
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in 5G systems) to receive the QFI
(QoS Flow Indicator) to 5QI
mapping. It creates the IPSec
(secure IP) tunnels based on QoS
flows required and forwards the
traffic into appropriate IPSec
tunnel based on the QFI.

e Our Own Related
Contributions

Control of and inference over
wireless networks: On the topic of
control of a wireless network that
connects sensors to a sink, in [29]
we have developed a new reduced
delay MAC (Medium Access
Control) in which there is no
centralised controller, and only a
one-bit information snooping
suffices to carry out the scheduling
actions. In [34] we consider several
sensors observing a random
process that, at a random time,
changes its statistics. The problem
is to make an optimal Bayesian
inference of the change point,
trading off the probability of false
alarm against the mean delay in
detection. We show that the
classical Shirayev algorithm needs
to be modified by solving the
partially observed MDP (Markov
Decision Process) “from scratch,”
yielding a different algorithm. In
[9], we continue work in
change-point detection over a
wireless network, except that here
we consider the non-Bayesian
framework. We find that the
optimal decision rule needs to
incorporate the random process of
network losses. Further, we study
the effect of service policy in the
wireless queue at the sensor.

Age-of-information: We have
developed [17], optimal sensor
sampling and transmission
scheduling algorithms to minimize
age-of-information (Aol) in a
single source single sink system
equipped with energy harvesting
capability and operating over a
wireless link. This work was later
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extended in [21] to handle the
problem of unknown wireless link
characteristics and unknown
energy harvesting statistics. In our
subsequent works [19, 22], we had
developed joint sensor scheduling
and sampling algorithms for Aol
minimization in a multi-source
single-sink system equipped with
energy harvesting sensors. Further,
nonstationary energy harvesting
rate and channel statistics were
handled in [18], [20], where we
had numerically demonstrated
that the regret of the proposed
transmission scheduling algorithm
with respect to a benchmark
algorithm is small.

Security of networked inference
systems: We have also worked on
false data injection (FDI) attacks
on remote state estimation
systems. Our work [8] developed
secure state estimation algorithms
in presence of FDI, as well as FDI
detection algorithms, for a remote
state estimation system comprising
multiple sensors communicating
with a remote state estimator.
Later, our work [14] developed the
quickest change detection
algorithm against FDI attack in
this setting. For distributed state
tracking systems, our work [13]
designed FDI attack in order to
steer the state estimates at various
sensors to a target value, under a
constraint on the probability of
attack detection. On the other
hand, our work [6] has developed
nearly quickest change detection
algorithm for FDI on such
distributed process tracking
systems.

Centralised overlay control of a
Wi-Fi network: In [38] we develop
ADWISER which is a centralised
overlay controller for a multi AP
Wi-Fi network. ADWISER
primarily provides global utility
optimal TCP throughputs across a
multi AP network, and can also
manage the performance of
downlink real-time flows, such as

real-time video.

o ADWISER for Industrial
Control Over Wi-Fi

ADWISER is an overlay Wi-Fi
controller introduced in [16], and
extended in [40]. ADWISER
manages the performance of
downlink and uplink TCP flows,
and downlink real-time video. All
data packets for downlink TCP
flows and ACK
(acknowledgement) packets for
uplink TCP flows are queued in
per-station queues in the
ADWISER controller. Downlink
real-time flows are queued in
separate per-station queues.
ADWISER overlays periodic
time-slices of, say, 20 ms duration,
which are partitioned into a mini
slice for releasing downlink real
time UDP packets, and the
remaining slice for uplink and
downlink best-effort flows. In each
best-effort subslice, ADWISER
uses an online learning algorithm
to determine a set of AP-STA pairs
to release best-effort packets. After
ADWISER releases data to the
Wi-Fi network, normal CSMA/CA
(Carrier Sense Multiple
Access/Collision Avoidance) is
used for transmitting the data
between the devices.

For the support of industrial
control, we have extended the
above approach to enable the
support of low latency uplink
UDP* real-time flows. In doing
this we have, essentially, provided
the support of Time Sensitive
Networking over Wi-Fi, in
conjunction with fair access to
bulk transfer TCP flows. We
achieve this objective by adding
uplink minislices to which the
various uplink UDP real-time
flows are mapped depending on
their requirements. ADWISER

4User Datagram Protocol: the procedures used
for transmitting data packets using the basic
unreliable Internet packet transfer service
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assigns industrial devices to their
respective minislices and ensures
that no best-effort flows or
downlink real-time flows occupy
these minislices. Uplink UDP
devices are assigned to minislices
and send their packets only during
their assigned minislices. To
achieve this, the uplink real-time
devices must align their clocks
with the ADWISER clock, so as to
accurately determine the location,
in time, of their assigned
minislices. In our current
implementation, due to the
unavailability of Wi-Fi devices that
support hardware level
time-synchronisation, we have
resorted to utilising Chrony, an
evolution of the well-known NTP
(Network Time Protocol), the
classical system for
time-synchronisation in the
Internet. ADWISER assists Chrony
in more accurate clock
synchronisation by periodically

Time taken = 7

occupying the Wi-Fi network.

Our approach of central
coordination and orchestration, in
conjunction with effective access
to scheduling features in the access
points can permit the support of
critical industrial Cyber-Physical
Systems over the ubiquitous and
inexpensive Wi-Fi technology.

o Drone Based Sensing for
Industrial Applications

In certain applications, wired or
wireless communication may not
be available. For example,
automated monitoring and
occasional water sprinkling over a
large agricultural field is an
important application, but
establishing a dedicated irrigation
system and communication
network only for this is usually not
cost efficient. A viable alternative
in this case is to use a drone that

Energy consumed

A

Energy consumed

=E,, units per time slot

=FE units per time slot

Fig-4: Quickest change detection by a sensor mounted on a drone;
diagram taken from [6]

allocating a minislice for Chrony
to send its clock-synchronisation
probe packets.

We have tested our approach with
a combination of real-time uplink
video, edge control of two-wheeled
self-balancing robots, and bulk
TCP transfers. The video is able to
maintain its native frame rate, and
the robots balance with tilt angle
errors close to the values when
their traffic is the only one
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can sprinkle water and also gather
the soil moisture information
during its tour over the field.
Another pressing application is
detection of poisonous gas leakage
in a large factory or mine, where
manual data collection is risky,
and establishing a dedicated
sensor network is challenging due
to cost or time constraints or due
to the nature of the terrain. A
mobile sensor such as one

mounted on a drone would be a
feasible solution for such
applications. Design of such
systems requires multi-pronged
efforts: the algorithmic side alone
poses several challenging
problems on energy management,
path planning, data compression
and efficient sensing algorithm
design.

Motivated by the drone based gas
leakage monitoring application,
our recent work [4] addresses the
problem of quickest change
detection (QCD [33]) at two
spatially separated locations
monitored by a single drone
equipped with a sensor. QCD
literature deals with detecting a
sudden change in the statistics in a
sequential data stream, the goal
typically being to minimize the
detection delay subject to a
constraint on false alarms wrongly
triggered due to a false perception
of change. In the gas leakage
example, a sudden leakage would
induce a change in the statistics of
sensor observations. In [4], we
consider an abstraction of this
problem. At any of the two
locations, the sensor (mounted on
a drone) observes data
sequentially at discrete time
instants. The distribution of the
observation data changes at some
unknown, arbitrary time and the
drone has to detect this change in
the shortest possible time. Change
can occur at most at one location
over the entire infinite time
horizon. The drone switches
between these two locations in
order to quickly detect the change.
To this end, we propose a Location
Switching and Change Detection
(LS-CD) algorithm for
observation-driven location
switching and change detection.
The primary goal is to minimize
the worst-case average detection
delay (WADD [33]) while meeting
constraints on false alarm rate and
the drone’s energy consumption
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rate. We provide a rigorous
theoretical analysis of the
algorithm’s performance, and
derive novel upper and lower
bounds to its performance metrics.
Numerical simulations
demonstrate the efficacy of the
proposed algorithm.

o Detecting and Localising
Drones

While drones can effectively be
used as sensors and actuators in a
CPS context, there are situations
in which adversarial drones need
to be detected. Given the
increasing use of drones, detection
and localisation of drones is an
important problem in many
military and civil applications.
While radar signal processing is a
classical field, increasing
applications of drones gives rise to
the need for high-resolution, low
power, cost-efficient radars. To this
end, our recent work [35] has
considered multiple-input
multiple-output (MIMO) radar
which offers several performance
and flexibility advantages over
traditional radar arrays.
Specifically, we consider frequency
modulated continuous wave
(FMCW) radars with MIMO
architecture, since it can operate at
a lower peak transmit power than
the traditional Pulse-Doppler
radar. However, achieving high
angular and Doppler resolutions
necessitate a large number of
antenna elements and the
transmission of numerous chirps,
leading to increased hardware and
computational complexity. In this
paper, we propose a novel
compressive sensing (CS)-based
multi-target localization algorithm
in the range, velocity, and angular
domains for MIMO-FMCW radar,
where we jointly estimate target
velocities and angles of arrival. To
this end, we present a signal model
for sparse-random and uniform
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linear arrays. For range estimation,
we propose two different
techniques, each with distinct
advantages, while
two-dimensional compressive
sensing is used for joint
velocity-angle estimation. We
establish theoretical performance
guarantees for the proposed
algorithm. Our numerical
experiments demonstrate that our
methods achieve similar detection
performance and higher resolution
compared to conventional DFT
and MUSIC with fewer
transmitted chirps and antenna
elements. In other words, our
proposed signal processing
algorithm improves radar sensing
performance while reducing the
hardware complexity, power
consumption and computational
complexity over conventional
MIMO-FMCW radars.

However, it has to be noted that
the work in [35] assumes point
targets. In practice, radar signals
scattered from drones have one
additional feature that is highly
useful, namely, the micro-Doppler
signature [11]. Analysis of Doppler
shift in the received signal reveals
useful information about the
velocity of the target; a
translational motion with constant
velocity of a point target will cause
a single Doppler frequency tone in
the received signal. However, a
drone has an extended body. Most
importantly, the distances of the
propeller blades from the radar
vary with time due to the blade
rotation. This yields a Doppler
spectrum at the receiver, which
contains additional Doppler
frequencies apart from that
generated due to a purely
translational motion. We are
currently working on developing
algorithms for micro-Doppler
processing in MIMO-FMCW
radars.

While the focus of our work has

been on developing practical
algorithms on radar signal
processing for drone detection,
theoretical development of such
algorithms poses very interesting
and challenging variants of
classical frequency estimation
problems [12], which may be of
independent interest to the
broader research community.

Conclusion

In this brief article we have
surveyed the state of research in
the important area of industrial
Cyber-Physical Systems over
wireless networks. At the present
time most industrial process
control happens over wireline
networks, such as the Industrial
Ethernet. Emerging applications
such as the control of mobile
robots and material handling
vehicles, indoor and outdoor
drones of a variety of sizes, and
the support of surveillance
cameras will require the
availability of wireless networks
that can provide the range of
quality of service and system
capacity that these applications,
at scale, will require. The
engineering of Cyber-Physical
Systems over wireless networks,
and the development and
management of wireless
networks that can support such
applicatuons can be expected to
be a challenging, emerging
opportunity.
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Institutional Membership:

Institutional Membership of INAE is offered to academic and research institutions, including universities,
colleges, engineering institutes and R&D organizations that are actively engaged in scientific and technological
pursuits. This membership category is aimed at strengthening linkages between INAE and institutions that
contribute significantly to engineering education, research, and innovation. Institutional Members benefit from
opportunities to participate in national conferences, symposia, and technical events organized by INAE. They
also receive access to a wide range of INAE publications, policy papers, and technical reports, and gain
opportunities to collaborate on engineering initiatives and national missions. This membership serves as a
platform for institutions to contribute to shaping the national engineering agenda and to engage with a larger
network of experts and decision-makers.

Corporate Membership:

Corporate Membership of INAE is intended for companies and industrial organizations engaged in engineering,
manufacturing, infrastructure, technology development, or consultancy. Corporate Members benefit from a
close association with INAE Fellows, policymakers and academic institutions on issues of engineering interest.
They gain access to workshops, panel discussions, and policy dialogues where critical issues at the intersection
of technology, industry, and national development are addressed. This membership will also enable companies
to nominate outstanding engineers for recognition by INAE and provide them a platform to contribute to
national-level discussions on industry-relevant challenges. Moreover, Corporate Members can actively
participate in fostering industry-academia collaboration, contributing to curriculum development, mentorship,
and joint R&D initiatives.

Individual Membership:

Though the Fellowship of INAE is the gold standard of recognition for notable engineers, who are elected by a
rigorous three-tier process by expert committees of the Fellowship, however, in order to encourage a wider reach
and participation of engineering community, Individual Membership has been recently introduced at INAE.
The Individual Membership is accorded to professionals working in engineering and technology in industry,
R&D or academic institutions, engineering services, entrepreneurship firms and government/private agencies
by a selection process. All Individual Members benefit from recognition by the Academy and provides a platform
for networking opportunities. A special program ‘Technology Conclave’ has been curated for the Members of
INAE. Members are also invited for the INAE’s flagship events held every year.

INAE currently offers Senior and Associate Memberships, to engage engineers at different stages of their careers.
Senior Membership is awarded to experienced professionals with significant experience in engineering
community. Associate Membership is aimed at promising mid-career engineers with opportunities for
participation in INAE activities. Together, these categories support a structured growth pathway within India’s
engineering ecosystem.

INAE’s membership structure is designed to build a vibrant, interconnected community of institutions,
companies, and individuals who are committed to advancing engineering and technology for national
development. Through its diverse membership base, INAE fosters interdisciplinary collaboration, provides a
platform for dialogue on critical technological issues and promotes excellence in engineering practice and
education across India and beyond.
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A significant new initiative launched by INAE is the quarterly e-Magazine TechFrontier, conceived to showcase
emerging trends, impactful research, and technological innovations in engineering and technology. The
magazine was successfully launched on April 20, 2025, during the INAE Foundation Day.

This digital publication is envisioned as a platform to highlight cutting-edge advancements from India and
across the globe. Its objective is to create awareness about engineering and technology by publishing articles on
futuristic, emerging, and high-impact technologies that appeal not only to the engineering community but also
to readers outside the field who have an interest in science and technology.

Volume 1, Issue I of INAE TechFrontier, centred on the theme “Quantum
Technology: India-centric Policy Perspectives”, was successfully launched on
April 20, 2025, during the INAE Foundation Day function held at IIT Delhi. The
inaugural issue received an encouraging response and set a strong precedent for
future editions. The issue features invited articles highlighting indigenous
products, technological breakthroughs, and conceptual or review contributions
that collectively reflect the cutting-edge advancements taking place in the
country in the field of quantum technology.

Click/Scan for TechFrontier Volume I, Issue I

Volume I, Issue II of INAE TechFrontier focuses on the theme “Manufacturing”,
ey a sector that forms the backbone of India’s aspirations for technological
TechFrontier self-reliance, global competitiveness, and sustained economic growth. As the

| | nation advances toward becoming a major innovation-driven economy, the
manufacturing ecosystem encompassing advanced materials, automation,
digitalisation, and sustainable production continue to evolve rapidly.

This edition features a thoughtfully curated collection of insightful articles that
showcase the diversity, depth, and transformative potential of manufacturing-
related research and development underway across the country.

Click/Scan for TechFrontier Volume I, Issue I1

INAE TechFrontier | 31


https://www.dropbox.com/scl/fi/s0izn1u52xeux8a03cg7e/INAE-TechFrontier-Volume-I-Issue-I-April-2025.pdf?rlkey=r1q9r4jx0pus9km39rb0kjpz1&e=1&st=ey9ng3e2&dl=0
https://www.dropbox.com/scl/fi/vliuim10ts0zduyylq890/2.-INAE-TechFrontier-Volume-I-Issue-II-August-2025.pdf?rlkey=yi0cc8hwxzmvklqgnk2599ive&e=1&st=5jmzp7fh&dl=0
https://www.dropbox.com/scl/fi/s0izn1u52xeux8a03cg7e/INAE-TechFrontier-Volume-I-Issue-I-April-2025.pdf?rlkey=r1q9r4jx0pus9km39rb0kjpz1&e=1&st=ey9ng3e2&dl=0

About INAE:

The Indian National Academy of Engineering (INAE),
founded on April 20, 1987 as a Society under the Societies
Registration Act, is an autonomous professional body
located at Technology Bhawan, New Delhi. It comprises
India’'s most distinguished engineers, engineer-scientists
and technologists covering the entire spectrum of
engineering disciplines. INAE functions as an apex
body and promotes the practice of engineering
& technology and the related sciences for their
application to solving problems of national
importance. The Academy also provides a forum for
futuristic planning for country's development requiring
engineering and technological inputs and brings
together specialists from such fields as may be
necessary for comprehensive solutions to the needs of
the country. The actionable recommendations
emanating from the deliberations of technical events
and programs are submitted to the concerned
government Departments/Agencies for consideration
as inputs for framing of national policies. As the only
engineering Academy of the country, INAE represents
India at the International Council of Academies of
Engineering and Technological Sciences (CAETS); a
premier non-governmental international organization
comprising of Member Academies from 33 countries
across the world, with the objective of contributing to

the advancement of engineering and technological

sciences to promote sustainable economic growth.
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