P. A. Lakshminarayanan

A. Name P. A. Lakshminarayanan Old 99, New 201, Thambu Chetty Street, Chennai, 600 001 Telephone (91)-98-40-850068 B. Father P.A. Arumugam Retired Senior Officer, Grindlays Bank, Madras-60001 C. Date of Birth 26- April 1950 D. Education St. Gabriel's High School, Madras SSLC 1965 2. Lovola College, Madras PUC 1966 Indian Institute of Technology, Madras 1971 B. Tech 3. Indian Institute of Technology, Madras MS by Research 1974 Indian Institute of Technology, Madras Ph. D. 1979 E. Scholarships National Merit Scholarship, 25th rank in the State of Madras in 1965 1965-69 IIT entrance, 5 in the southern zone and 25 all-India rank **IIT Merit Scholarship** 1966-71 British Science and Engineering Research Council Fellowship at the University of Technology, 1978-82 Loughborough, UK Ranks and Awards 1992 1. National: Best paper prize at National Conference for IC Engines and Combustion, XII, Dehradun for the paper on Vibrations of a 3-Cylinder Engine National: Automotive Engineer of the Year award from the Institute of Automotive Engineers (India) (now SAE 1994 3. International: Arch T Colwell Merit Award, SAE (USA) for the paper on Evaporating and combusting Diesel 1984 All-India First rank in the IES, Indian Engineering Services, UPSC examination 1974 Within the top 4 out of 250 in the entire B Tech 1971, from Madras IIT 1971 5th from the South Zone and 25th All India in the IIT entrance exam 1966 25th from the entire state of Madras, Secondary School Leaving Certificate Examination 1964 8. Performance award by Kirloskar for creditable contribution 9. Listed in the Who's Who in the World and Who's Who in the Finance and Industry, Marquis Publications 1997-10. Second prize, AVL Advanced Simulation Technology, Graz for the paper on Heat release in Direct Injection 2005 **Diesel Engines** 11. Second prize, AVL Simulation Technology, Pune for the paper on Computational Fluid Dynamics 2008 12. SAE (Intl.) Fellowship 2009 13. Special Prize for a paper on the transient performance of Diesel Engines, AVL Conference, Pune 2010 2010 14. Fellowship, The Indian National Academy of Engineering (INAE) 2013 15. Fellowship, International Society for Energy, Environment and Sustainability 2018 G. Work Experience 1. Res. Associate to Prof. JC Dent, University of Technology, Loughborough, UK 1978 -1982 Senior Manager, R&D, Kirloskar Oil Engines Limited 1983 -1994 General Manager, R&D, Kirloskar Oil Engines Limited 1994 - 1997 Senior General Manager, R&D, Kirloskar Oil Engines Limited 1997-2002 Head, Engines R&D, Ashok Leyland, Hosur 2002 - 2010 On Contract for design and development of advanced engines, Ashok Leyland, Hosur 2010 -2011 2011 - 2016 7. Chief Technology Officer, Simpson and Co Ltd., Madras Technical Advisor, Simpson and Co. Ltd., Madras 2016-2018 Visiting Professor, IIT Kanpur, India 2024-H. Interaction with Educational Institutions to guide students to higher degrees 1. M Tech. Guidance at College of Engineering Pune 4 1983-2001 2. M. Tech Guidance at IIT Madras 2001 1 M. Tech. teaching a course on Engine Design 1993-2008 Ph. D Guidance at IIT Delhi, Studies on Wear of some critical Parts in Diesel Engines Nagaraj 2005 Shivappa. Nayak, Centre for energy studies Ph. D Guidance at IIT Delhi, Modelling Diesel Combustion, Yogesh Aghav, Centre for Energy 1 2006 6. B. Tech, M. Tech., VelTech, Chennai, Engine Design and Development 2015-7. Mahindra Technical Academy, Chennai, Engine Design and Development 2018-**Professional Membership** 1. Society of Automotive Engineers, SAE, USA 1979 -Combustion Institute India 1994-3. ASME, USA Two years Till 1997 Elected an active member of the New York Academy of Sciences every year 2009 Fellow, SAE International 6. Fellow, The Indian National Academy of Engineering (INAE) 2013 7. Fellow, International Society for Energy and Environment and Sustainability (ISEES) 2018 J. Books

Modelling Diesel Combustion, A book to be published by Springer Verlag, The Netherlands (Book), Second Ed.

Critical component wear in heavy-duty engines, John Wiley (Book)

Design and Development of Heavy-Duty Diesel Engines (Springer)

1.

In 2021

2010

2011

2019

4. Thermal Management of Engines for Performance and Emissions

5. Modelling Spark Ignition Combustion, Springer Nature

2021 2024

K. Research Publications

K.	Res	search Publications	
	1. 2.	A Gas Sampling Valve for spark-ignition engines, vol.4, Iranian Journal of Technology A Mathematical Model for a 4-stroke Spark Ignition Engine, CSIR Indian Journal of Technology, vol. 15	1976 1977
	3.	Analysis of fluctuations in gas velocity in Motoring conditions, National Conference on IC Engines and Combustion, Bombay,	1979
	4.	Measurement of pulsating temperature and velocity in an internal combustion engine using an ultrasonic flow meter, <i>J. Physics. E: Scientific Instruments</i> 12, 1053-1058	1979
	5.	Prediction of Gas Exchange Processes in a Single Cylinder Internal Combustion Engine, Feb-26- March, SAE790359	1979
	6.	An Ultrasonic flow meter for measurement of Gas Velocity and Temperature in intake and exhaust of an Internal Combustion Engine, Jun3 11- 15, SAE Transactions, 790689	1979
	7.	New Instrumentation Technique for the Study of Unsteady Gas Exchange Process in Engine Manifolds, Spring Meeting, Central States Section, The Combustion Institute, Apr 9-10, Columbus, Indiana	1979
	8. 9.	Modelling of Combustion in Lean Burn Engines, Symposium on UK Universities and Polytechnics, by Science and Engineering Research Council at Kings College, London, April Generalised Procedure for Flame and Combustion Chamber Surface Determination in SI Engines, SAE 821223	1980 1982
	10.	Interferometric Studies of Vaporising and Combusting sprays, SAE 830244*	1983
	11.	A Model for Adsorption and Desorption of Fuel Vapour by Cylinder Lubricating Oil Films and its Contribution to Hydrocarbon Emissions, SAE 830652	1983
	12.	A Heat Release Model for Divided Chamber Diesel Engines, SAE 860084	1986
	13.	Study of Air-Gap Insulated Piston in Naturally Aspirated Small Diesel Engines, CIMAC International, Warsaw	1987
	14.	Effects of injection parameters, fuel quality and ambient on the ignition delay and ambient on the ignition delay and the location of the flame Kernel in a diesel spray in a quiescent chamber, SAE transactions ISSN 0096-736X, 1989, vol. 97 (6), pp. 1464-1475 (15 ref.)	1989
	15.	Design and Development of the new WA series highly rated Diesel Engine, CIMAC International, Tianjin, China	1989
	16.	Universal Mixing Correlations for the Performance and Emission of Open Chamber Diesel Combustion Supported by Air-swirl, SAE 900446	1990
	17.	Solution to the Vibration Problems of a 3-cylinder Diesel Engine, XII National Conference for IC Engines and Combustion, Dehradun	1992
	18.	Design and Development of a Mechanical Governor for a Large Horsepower Diesel Engine, XIII National Conference on IC Engines and Combustion, Bangalore	1994
	19.	Heat Transfer in Diesel Engines and Estimation of the Lubricating Oil Temperature, Vol. 208, Proceedings of Institution of Mechanical Engineers, IMechE (UK)	1994
	20.	Linear modelling and design of exhaust mufflers for diesel engines, XV National Conference on IC Engines and Combustion, Anna University, Madras	1998
	21.	Design and development of a torsional vibration rubber damper, SAE 990023	1999
	22.	Solving Inlet valve seat wear problem in high BMEP engines, SIAT 2001, SAE2001-01-0024	2001
	23.	Generalised boundary conditions for calculating Diesel Pistons, SAE conference in Madras, January 2002	2001
	24.	Predicting HC emissions from DI Diesel engines, ASME Fall Conference, September 2000 and ASME Transactions 2002	2002
	25.	Liner wear by extending Kragelskii model, Journal of Tribology, IMechE (London) Vol. 216, Part J	2002
	26. 27.	Accurate prediction of heat release in Direct Injection Diesel Engines, Proceedings of Institution of Mechanical Engineers, Vol. 216, Part D: Journal of Automobile Engineering, IMechE (London) Bore polishing wear in diesel engine cylinders – ESDA- 58526, ASME, Manchester UK	2002
	28.	Abrasive wear of Piston grooves of Highly loaded Diesel Engines, ESDA 58520, ASME, Manchester UK	2004
	29.	Two Methods for Improving Torque of a Diesel Engine in the Low-Speed Range - a paper submitted to Symposium	2005
	30.	on International Automotive Technology, India and Auto-Expo Stuttgart Development of Modern Single cylinder High power engine for Agricultural application – SETC 2004, JSAE –52,	2004
	31.	Graz, Austria Prediction of cam follower wear in diesel engines- Paper submitted to 15th International Conference on Wear of	2004
	32.	Materials- USA – Wear Transaction, Elsevier Publication Improving AVL MCC model and implementing in "Boost", International User Conference, Advanced Simulation	2005
	33.	Technologies, AVL, Graz, Austria ICEF2005-1350 Phenomenology of smoke from direct injection diesel engine ASME, USA, presented at IC	2005
	34.	Engines Spring Conference, Aachen, Germany ASME, WTC2005-63599: Studies on Wear of Inlet Valve and Cylinder Bore in Diesel Engines, Nagaraj Nayak, Kirloskar Oil Engines Limited, Pune, Maharashtra-State, India, P. A. Lakshminarayanan, Ashok Leyland, Hosur India, M. K. Gajendra Babu, Indian Institute of Technology, New Delhi, India, A. D. Dani, Kirloskar Oil Engines, Ltd., Pune, India, World Tribology Congress III, September 12–16, 2005, Washington Hilton & Towers,	2005
	35.	Washington, DC, USA ICES 2006-1346 Validating phenomenological smoke model at different operating Conditions of DI diesel engines, ASME, USA, presented at IC Engines Spring Conference Aachen, Germany	2006
	36.	A Case Study on the Application of a Genetic Algorithm for Optimization of Engine Parameters, Proceedings IMechE (London) 2006, D09204, Vol. 220 Part D, Journal of Automobile Engineering	2006
3	37.	Finite Element Analysis of Separation of Ring Gear and Flywheel due to over-speed and Heating by Clutch Slip, National Abagus Users' Conference, Bangalore, 11-Oct-06	2006
3	38.	Engine Noise Mapping and Noise Reduction, Bruel and Kjaer Conference, Bombay, 12 Oct-06	2006
3	39.	Thermodynamic Simulation of Turbocharged Intercooled Stoichiometric Gas Engine, SAE Paper 2008-01-2510	2008
2	40.	CFD simulation of a 171 kW Euro-2 engine, AVL Conference, Pune	2008
2	41.	NOx Selective Catalytic Reduction (SCR)-Emission Technology for India, SAE Paper 2009-26-0015	2009
4	1 2.	Euro-3 Emission Compliant Engine using Low-Pressure Fuel Injection System without Electronics, May, SAE Paper 2010-01-1504	2010
2	43.	A cost-efficient EGR technology equipped with mechanical fuel injection equipment for future off-road diesel engines satisfying advanced emission norms, SAE Paper 2010-01-1958	2010
2	14.	Crankshaft Peak Firing Pressure Bearing Capability Enhancement SAE Paper 2010-01-1527	2010

45.	Transient Simulation of Engines and Vehicles applying 1-D Engine Performance Software; Virtual Power train conference, Pune, 25 May 2010	2010
46.	The Introduction of Bharat Stage 4 into the Indian Market, SAE Heavy Duty Diesel Emissions Control, Symposium, 21-22 September in Gothenburg, Sweden	2010
47.	Simulation of Engine Transients and Passby Noise- applying 1-D Engine Performance Software, AVL Boost, Advanced Simulation Technologies, Indian User Conference 2010 at Hotel Le Meridian, Pune, 24 November 2010	2010
48.	Prediction of the rate of heat release of mixing-controlled combustion in a common-rail engine with pilot and post injections, Journal of Automotive Engineering, IMechE (Lond.); vol. 225, issue 2, pp. 246-259, DOI: 10.1243/09544070JAUTO1615; 1 Feb 2011	2011
49.	A Basis for Estimating Mechanical Efficiency and Life of a Diesel Engine from its Size, Load Factor and Piston Speed, 2011-01-2211, Published 09/13/2011	2011
50.	Blowby, Breathing and Oil Slobbering from Small Engines, SIAT SAE, 2013-26-0123	2013
51.	Transient Thermodynamic Performance and Passby Noise from the Silencer of a Modern Diesel Engine in an Actual Vehicle" SAE Journal of Engines, 2013-01-9045, 2013	2013
52.	Estimation of Particulate Matter from Smoke, Oil Consumption and Fuel Sulphur, SAE 2016-32-0066, published: 2016 2016-Nov-08 (presented earlier at CMC Pune, 2014)	2016
53.	A New Two Cylinder Diesel Engine Family for Off-road in Naturally Aspirated and Turbocharged Intercooled Versions, SAE 2016-01-2335, published: 2016-Oct-17	2016
54.	A Layout for the Hydrogen Engine, Journal of Energy and Environmental Sustainability (accepted)	2023
*Arch	T Colwell Merit Award	

L. Design Experience

L.1. Design and Development of Cylinder Head, Ports, Manifolds, Piston Cavity, Combustion System and Matching Fuel Injection

Equipment of the following Diesel Engines

Bore x Stroke x Hp rpm Emissions Application Engine type year

	Bore x Stroke x cylinder	Нр	rpm	Emissions	Application	Engine type	year
1.	75 x 76, 1	5	2200	-	Water Pump	WP	1983-85
2.	75 x 76, 1	7.1	3000	-	Generator	GP	1991-94
3.	100 x 110, 2 and 3	22, 23	2000	TREM-1	Tractor Power Unit Tractor Power Unit	RVTMA	1985-87
4. 5.	100 x 120, 2 and 3 175 x 220, 4	46, 30 180	2300 1000	US Tier-1	Marine	HV2, HV3 W4ND	1993-94 1992
6.	110 x 116, 6	127	1500	TREM-1	Genset	RB66TA	1994
7.	105 x 120, 4	80	2500	US Tier-1	Power unit Tractor*, Genset and Earth Mover		1994-98
8.	105 x 120, 4	110	2500	US Tier-1	Genset and Earthmover	4R1040T, TG	1998-99
9.	105 x 120, 4	135	2500	US Tier-1	Genset and Earthmover	4R1040TA, TAG	1998-99
10.	124 x 130, 1	22.5	2250	US Tier-1	Tractor	1R1600	1999-04
11.	105 x 125, 6	170	1500	US Tier-1	Gen-set	6R1080TAG	1999-00
12.	100 x 110, 3	34	2000	US Tier-1	Tractor*	3R860	2000-01
13.	102 x 120, 3	45	2000	US Tier-1	Tractor	3R980	2000-01
14.	124 x 135, 1	25	2250	US Tier-1	Tractor	1R1600	2000-01
15.	107 x 120, 6	130, 160	2500	Euro-2	Truck	L62D, L62N	2003-04
16.	104 x 113, 6	130, 160, 180	2400	Euro-2	Truck and Bus	HA6DTI2D HA6DTI2N HA6DTI2U	2003-04
17.	104 x 113, 6	205	2500	Euro-2	Truck and Bus	HA6DTI2S	2004-05
18.	104 x 113, 6	205	2500	Euro-3	Truck and Bus, Common Rail System	HA6DTI3S	2002-06
19.	104 x 113, 6	185	2500	Euro-3	•	HA6DTI3U	2002-06
20.	104 x 113, 4	120	2500	Euro-3	Truck and Bus, electronic engine	HA4CTI3U	2002-06
21.	104 x 113, 4	120	2500	Euro-3	Trucks and Buses using inline pumps without electronics	НА4СТІЗК	2009-10
22.	104 x 113, 6	80	2200	USTier-3	Combine harvester, earthmovers, and backhoe using the inline pump without	HA6DTI	2009-10
23.	104 x 113, 6	136	2200	USTier-3	electronics Combine harvester,	HA6DTI	2009-10
					earthmovers, and backhoe using the inline pump without electronics		
24.	104 x 113, 6	160	2500	Euro-4	Truck and Bus, electronic engine, SCR	HA6DTI4N	2005-10
25.	104 x 113, 6	205	2500	Euro-4	Truck and Bus, electronic engine, SCR	HA6DTI4S	2005-10
26.	104 x 113, 6	230	2500	Euro-4	Truck and Bus, electronic engine, SCR	HA6DT4SS	2005-10
27.	104 x 113, 6	190	2500	Euro-4	Truck and Bus, electronic engine, EGR	HA6DT4ME	2005-10
28.	104 x 113, 6	130	2500	Euro-4	Truck and Bus, electronic engine, SCR	HA4DT4ME	2005-10
29.	104 x 113, 6	230	2500	IMO-1	Marine engine	HA6DTI	2005-10
30.	104 x 113, 6	170.1	1500	CPCB-1	125 kVA Genset	HA6DTI	2010-11
31.	·	136.1	1500	CPCB-1	100 kVA Genset	HA4DTI	2010-11
32.	104 x 113, 6	217.7	1500	CPCB-1	160 kVA Genset	HA6DTI	2010-11
33.	·		1500	CPCB-1	11 kVA Genset		2010-11
	•	16.3				SC213	
34.	95 x 91, 2	22.0	2200	TREM3A, Tier4	Tractor	SC213	2012-13

35.	95 x 91, 2	25.0	2500	-	Industrial	SC213	2012-13
36.	95 x 91, 2	17.0	1500	-	Industrial	SC213	2012-13
37.	95 x 91, 2	23.1	1500	CPCB-2	15 kVA Genset	SC213TA	2012-13
38.	95 x 91, 2	18.0	1500	CPCB-2	15 kVA Genset	SC213T	2012-13
39.	95 x 91, 2	18.0	1500	CPCB-2	20 kVA Genset	SC213T	2014-16
40.	95 x 127, 3	42.6	2200	TREM3A, Tier4i	Tractor	SJ327TA	2012-13
41.	95 x 127, 4	44.1	2200	TREM3A, Tier4i	Tractor	SJ436TA	2012-13
42.	95 x 127, 4	47.8	2200	TREM3A, Tier4i	Tractor	SJ436TA	2012-13
43.	95 x 127, 4	55.1	2200	TREM3A, Tier4i	Tractor	SJ436TA	2012-13
44.	95 x 127, 4	60.3	2200	TREM3A, Tier4i	Tractor	SJ436TA	2012-13
45.	100 x 127, 4	73.5	2200	EU Stage2	Tractor	B X 200TA	2013-14
46.	95 x 91, 2	22	2200	TREM3A, Tier4f	Tractor	SC213TA	2013-14
47.	100x127, 4	90	2200	Tier2	Tractor	ST440TA E1	2015
48.	100x127, 4	100.5	2200	Tier2	Tractor	ST440TA E2	2016
49.	95 x 91, 2	35	2500	TREM3A, Tier4i	Tractor	SC213TA	2016-17
50.	100 x 95, 1	17	2800	TREM3A, Tier4f	Tractor	SC108	2016-17
51.	100x127, 4	110	1500	CPCB2	82.5 kVA Genset	ST440TA	2018

The engines shaded above received the best innovative product award (**Golden Peacock**) from the Institute of Directors, India in January 2000

* Certified by the EPA for US-Tier1

L.2. Design, Development and Testing of dual fuel and Gas Engines

	Bore x Stroke x cylinder	Hp x rpm	Application	Engine type	year
1.	175x220, 4 and 6	400x1000, 600x1000,	Power Generation running on Natural Gas and Bio Gas in dual fuel mode	W4ADG and W6ADG	1993-95
2.	110x116, 6	105x1500	Power Generation	RB66T (Gas)	1993-94
3.	175x220, 4	600x1500	Power Generation	24AG-1500	1995-96
4.	105x120, 4	82x2700	Truck, Multipoint fuel injection system with Bosch platform	4R1040C	2000-01
5.	104x113	150x2500	4-cylinder-Truck and Bus, electronic engine, with 3-way catalyst, multipoint fuel injection	Euro-6 (EEV)	2009
6.	104x113	180x2500	6-cylinder-Truck and Bus, electronic engine, with 3- way catalyst multipoint fuel injection	Euro-6 (EEV)	2010
7.	104x113	130x2500	6-cylinder-Truck and Bus, electronic engine, with 3- way catalyst, single point fuel injection	Euro-6 (EEV)	2010
8.	104x113	144x2500	4-cylinder-Truck and Bus, electronic engine, with 3- way catalyst, multipoint point fuel injection	Euro-6 (EEV)	2010
9.	104x113	125x2500	4-cylinder-Truck and Bus, electronic engine, with 3-way catalyst, multipoint point fuel injection	Euro-6 (EEV)	2010
10.	104x113	124 kVA, 50 Hz	6-cylinder-TCIC engine with low-pressure gas control	Euro-6 (EEV)	2011

L.3. Design and Development of Full Diesel Gensets

	kVA	Hz	Application	year
1.	10	50	Power Generation	2017
2.	50	50	Power Generation	2017
3.	62.5	50	Power Generation	2018

L.4. Design, Development and Testing of Turbine expander cooler

	Flow rate x pressure	Application	year
1.	150 cfm x 7 kg/cm2	Turbine expander for cooling military aircraft on the ground	1992
2.	300 cfm x 7 kg/cm2	Turbine expander for cooling military aircraft on the ground	2001

L.5. Design, Development and Testing of Mechanical Governors for large hp Engines

	Bore x Stroke x cylinder	Hp x rpm	Application	Engine type	year
1	175x220, 4 and 6	400x100060 0x1000	Power Generation (Turbocharged, air-to- water after-cooled)	WA	1992
2	RSV governor for a single- cylinder engine	25x2250	Tractor	1R1600	2001

L.6. Design, Development and Testing of Crankshaft Dampers

	Bore x Stroke x cylinder	Hp x rpm	Application	Damper type	Engine type	year
1.	175x220, 4	600x1500	Power Generation	Spring and mass	WA (1500)	1992
2.	110x116, 6	105x1500	Power Generation	Rubber type	RB66T	1992
3.	118x135, 6	240x2200	Power Generation and Truck	Rubber type	6SL9088TA	1998
4.	105x125	210x2500	Compressor	Rubber type	6R1080TA	2000
5.	113 x 127	260 x2500	truck	viscous	J8.08	2006
6.	104 x113	180 x2400	truck	rubber	HA6DTI2D HA6DTI2N HA6DTI2U	2005

L.7. Design, Development and Testing of Water Pump, special air-to-air Intercoolers, canopies and vibration control

	Bore x Stroke x cylinder	Hp x rpm	Engine type	Component	Feature	year
1.	175x220, 4	600x1500	WA (1500)	Fresh Water Pump		1992
2.	105x120, 4, 6	80~210x2500	4R1040, 6R1080	Fresh water pump		1995
3.	110x116, 3	50x2000	RB33	Noise Reduction	By 10 dBA	1991
4.	110x116, 6	127x1500	RB66TA	Air-to-air Intercooler	90%Effectiveness, For the first time in India in Aluminium Construction	1994
5.	75x76	7.1x300	GP	Canopy	Less noise, and no Auxiliary fan to keep the canopy cool	1992
6.	104x113	180x2500	Truck	Water pump	Improved cooling	2002

L.8. Design and Development of Instruments

	Instrument	Feature	Year
1.	Torque-meter to measure 70 hpx4000 rpm	Strain-gage type to measure dynamic torque	1971
2.	Cyclic Irregularity meter	Uses a Z80 Microprocessor – picks up starter gear teeth and works out instantaneous velocity and hence cyclic irregularity	1985
3.	Torsional Vibration Meter	Uses Analogue circuits. Based on the Fourier series of square pulses arriving at variable frequency. Integrates t the torsional oscillation twice.	1987
4.	Electrical Analogue of Pistons	Electrical Analogue of the thermal field in the piston reveals the temperature distribution in pistons	1986
5.	Camera	To get interferograms of diesel spray obtained using double-exposure laser holographic interferometry. This special camera can take photographic prints of holograms focused at infinity	1979
6.	Crank Angle Selecting Unit	At the selected crank angle it produces an electrical pulse to trigger instruments and devices	1978
7.	Accurate Electronic clock	Least count 200 n-second	1978
8.	Ultrasonic flow and temperature meter	Measures transient temperature up to 1000 K, and velocity up to 250 m/s simultaneously in the exhaust and inlet manifolds to calculate available energy to the turbochargers.	1978
9.	Closed-circuit engine cooling	To conserve cooling water and additiveReduced losses to 1 litre per 600 hours	2002
10.	Development of Damper testing rig		2004
11.	Crankshaft testing rig	For testing the bending fatigue strength of the crankshaft	(2006)

M. Design Software or procedures developed

Software or Procedure	Feature	Year
Matching turbochargers	Enables selection of turbochargers first time correctly matched	1987
Cams	Design of harmonic inlet and exhaust cams for diesel engines Predicts the energy available in the exhaust for useful work, and the volumetric	1988
Available energy	efficiency and inlet depression	1978
Emissions	Calculates and predicts HC emissions from Spark Ignition Engines	1982
Emissions	Predicts HC emissions from Diesel Engines	1999

N. Knowledge of Software

Higher languages Basic, Fortran, Turbo-C Assembler Z80, 8085, 6800

Finite element Cosmos-M, Abaqus, Ansys

CAD Auto-Lisp, Solid-Works, Pro/E Wildfire

CAM M and G codes
Instrumentation National Instruments
Thermodynamics EC Diesel, Boost
Crankshaft and bearings Excite Designer

O. Patents

	Patents		Appl. No
1.	Farmer-friendly washable but highly efficient air filter for tractor engines		<u>.</u>
2.	USTier-3 engine using inline fuel injection pump without electronics		
3.	Euro-3 engine using inline fuel injection pump without electronics		
4.	A System and method for reducing fuel consumption by controlling engine idling time	18/05/2005	594/CH E/2005
5.	A method to determine the damping coefficient of a Viscous Damper used in Diesel Engine	2007	Applied
6.	Boost Pressure On-Off valve for vehicle limp-home device	19/12/2007	3052/CH E/2007
7.	Method to prevent overheating on indigenous nozzles	2007	Applied
8.	Dual Voltage Alternator System	25/06/2008	1544/CH E/2008
9.	New Exhaust Gas Re-circulation (EGR) System for IC Engines	10-08-2009	2447/CH E/2009
10.	EURO3 or BS3 diesel engines with mechanical inline Fuel Injection Pumps without electro-controlling devices	30/10/2009	2646/CH E/2009
11.	High Pressure-filtered EGR system with low-pressure fuel injection	06-11-2010	1632/CH E/2010

P. Additional Professional Activities

- 1. Teaching M. Tech (Automotive Engineering) as a visiting faculty at the Indian Institute of Technology, Madras
- 2. Guidance to Pune and Madras Universities M. E. Students regularly till 2009
- 3. Guiding two PhD students at the Indian Institute of Technology, New Delhi
- 4. Examination of Ph. D. Theses from Indian Institute of Technology, New Delhi, VIT -Vellore, Pune University
- 5. Widely travelled for learning, solving problems, and interacting with customers and suppliers and intellectuals.
- 6. Teaching at Mahindra Technical Academy, Chennai
- 7. Teaching at IIT Kanpur
- 8. PIP programmes at SAE India and SAE (intl.)

Q. Languages

Tamil
 English
 German
 French
 Read, write and speak
 Read, write and speak
 Read and speak
 Read

5. Hindi Read, write and speak6. Marathi Read and speak

20/04/23 P.A. Lakshminarayanan